
DELIVERABLE REPORT D2.1

Deliverable Dx-y

GRANT AGREEMENT: 604134

ACRONYM: eNanoMapper

NAME:
eNanoMapper - A Database and Ontology
Framework for Nanomaterials Design and Safety
Assessment

PROJECT COORDINATOR: Douglas Connect GmbH

START DATE OF PROJECT; DURATION: 1 February 2014; 36 months

PARTNER(s) RESPONSIBLE
FOR THIS DELIVERABLE:

UM, EMBL-EBI

DATE: 1.6.2014

VERSION: V.1.0.

DELIVERABLE REPORT D2.1

Framework and Infrastructure for
ontology development, versioning
and dissemination

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 2 of 17

Document Type Deliverable Report

WP/Task 2 - 1

Document ID eNanoMapper D2.1.

Status Final

Partner Organisations

 Douglas Connect, GmbH (DC)

 National Technical University of Athens (NTUA)

 In Silico Toxicology (IST)

 Ideaconsult Ltd (IDEA)

 Karolinska Institutet (KI)

 VTT Technical Research Centre of Finland (VTT)

 European Bioinformatics Institute (EMBL-EBI)

 University of Maastricht (UM)

Authors
Janna Hastings (EMBL-EBI), Egon Willighagen (UM)

Reviewed by Barry Hardy (DC)

Purpose of the Document
To report on the technical infrastructure that has
been implemented for the eNanoMapper ontology
development, dissemination and versioning.

Document History

1. First draft, 01/06/2014
2. Internal draft for review 15/06/2014
3. EW review and comments 30/06/2014
4. JH pre-final version 02/07/2014
5. Completed version, 21/07/2014
6. Final reviewed version 1.0, 31/07/2014

Call identifier FP7-NMP-2013-SMALL-7

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 3 of 17

TABLE OF CONTENTS
1. EXECUTIVE SUMMARY..6

2. INTRODUCTION ..7

3. TECHNICAL INFRASTRUCTURE ..8

3.1 STORAGE, DISSEMINATION AND VERSIONING ... 8
3.1.1 ONTOLOGIES REPOSITORY .. 8
3.1.2 ontoTest REPOSITORY ... 9

3.2 ONTOLOGY DEVELOPMENT .. 11
3.2.1 DEVELOPMENT LANGUAGE .. 11
3.2.2 METADATA STANDARDS .. 12
3.2.3 CURATION PLATFORM .. 12

3.3 RE-USING EXTERNAL CONTENT ... 13

4. CONCLUSION .. 16

5. BIBLIOGRAPHY ... 17

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 4 of 17

TABLE OF FIGURES

Figure 1: The eNanoMapper ontologies repository.. 9
Figure 2: The eNanoMapper ontologies repository commit history .. 9
Figure 3: The Jenkins build system, eNanoMapper installation ... 10
Figure 4: The Jenkins test results for the eNanoMapper ontology tests .. 11
Figure 5: Ontology editing in Protégé. .. 13
Figure 6: Ontology imports within Protégé .. 14

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 5 of 17

GLOSSARY

Abbreviation / acronym Description

WP Work Package
OWL Web Ontology Language

MIREOT
Minimum Information to Reference an External Ontology
Term

API Application Programming Interface
URL Universal Resource Locator
BFO Basic Formal Ontology
CHEMINF Chemical Information Ontology
DC Dublin Core Metadata Ontology
IAO Information Artifact Ontology
NPO NanoParticle Ontology
RO Relations Ontology
BAO BioAssay Ontology
OBI Ontology of Biomedical Investigations

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 6 of 17

1. EXECUTIVE SUMMARY

The eNanoMapper project aims to build an ontology and database to collate and describe data relevant
for “safe by design” engineered nanomaterial development. Work Package 2 of this effort will develop
and disseminate a comprehensive ontology for the nanosafety domain, encompassing nanomaterials
and all information relating to their characterization, as well as relevant experimental paradigms,
biological interactions and safety information. This deliverable report describes the technical
infrastructure that has been created in order to support the development, versioning and dissemination
of the ontology. The technical infrastructure also supports the process of the re-use of existing
ontologies, as the eNanoMapper objective is to fully harness pre-existing efforts thus avoiding
unnecessary and divisive re-implementation. At the same time, re-use poses challenges, thus, our
technical infrastructure has been created such as to support modular incorporation of external content
from multiple sources while removing duplication and contradictions that can arise from integration. We
have implemented an infrastructure for extensive unit and integration testing to ensure that changes in
underlying source ontologies do not break the coherence of our offering. All of these aspects are
described in this report.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 7 of 17

2. INTRODUCTION
Nanomaterials are materials in which the units have at least one dimension sized in the 1-100nm range.
In addition to the wide diversity of natural nanomaterials available, advances in chemical synthesis
techniques have led to an explosion in engineered nanomaterials (ENMs) in recent years. Materials with
structures in the nanoscale range often have unique optical, electronic, and mechanical properties, and
as a result ENMs are being developed to meet specific application needs in diverse domains across the
engineering and biomedical sciences (e.g. drug delivery). However, accompanying the proliferation of
nanomaterials is a challenging race to understand and predict their possibly detrimental effects on
human health and the environment.

The eNanoMapper project (www.enanomapper.net) is creating a pan-European computational
infrastructure for toxicological data management for ENMs, based on semantic web standards and
ontologies. eNanoMapper aims to develop a comprehensive ontology and annotated database for the
nanosafety domain to address the challenge of supporting the unified annotation of nanomaterials and
their relevant biological properties, experimental model systems (e.g. cell lines), conditions, protocols,
and data about their environmental impact. Rather than starting afresh, the developing ontology will
build on existing work, integrating existing ontologies in a flexible pipeline. The establishment of a
universal standardisation schema and infrastructure for nanomaterials safety assessment is a key
project goal, which will catalyze collaboration, integrated analysis, and discoveries from data organised
within a knowledge-based framework. This framework will support the discovery of nanomaterial
properties responsible for toxicity, and the identification of toxicity pathways and nano-bio interactions
from linked datasets, ontologies, omics data and external data sources.

Ontologies are structured controlled vocabularies enhanced with explicit formal relationships between
entities in support of advanced automated reasoning for inference and error detection. Work Package 2
of the eNanoMapper project focuses on the development and dissemination of a comprehensive
ontology for the nanosafety domain, encompassing nanomaterials and all information relating to their
characterization, as well as relevant experimental paradigms, biological interactions and safety
information.

As technical artifacts similar to items of software, ontologies require technical infrastructure to create,
maintain and disseminate. Thus, the initial objective of Work Package 2 is to setup the technical
framework within which the ontology can be developed. This deliverable report accordingly describes
the technical infrastructure that has been created in order to support the development, versioning and
dissemination of the ontology. The technical infrastructure also supports re-use of existing ontologies,
as the eNanoMapper objective is to fully harness pre-existing efforts thus avoiding unnecessary and
divisive re-implementation. At the same time, re-use poses challenges, thus, our technical infrastructure
has been created such as to support modular incorporation of external content from multiple sources
while removing duplication and contradictions that can arise from integration. We have implemented an
infrastructure for extensive unit and integration testing to ensure that changes in underlying source
ontologies do not break the coherence of our offering. All of these aspects are described in this report.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 8 of 17

3. TECHNICAL INFRASTRUCTURE

3.1 STORAGE, DISSEMINATION AND VERSIONING
The primary hub within which the ontology will be stored and which enables both dissemination and
versioning is provided for us by GitHub (http://www.github.com/). GitHub is a web-based version
control and hosting system for collaboratively developed software or other technical projects. It
provides file hosting within a project and nested directory structure, and files are versioned using the Git
distributed versioning system architecture. Within GitHub, developers create logins and can be assigned
rights on different repositories. Repositories may be forked and worked on independently, while
changes can then subsequently be merged in to downstream repositories using the social push/pull
infrastructure with comments and patch support. This supports the modular development, review, and
maintenance of the ontology. The default git and GitHub application programming interfaces (APIs)
allow integration into our development workflow.

An eNanoMapper project has been created on GitHub, which includes several repositories. This can be
found at http://github.com/enanomapper/. Several repositories are listed on the project page, relating
to all aspects of the eNanoMapper work for which a version control system is needed. For the purposes
of ontology development, the important repositories are ‘ontologies’, in which the ontology is stored
and versioned, and ‘ontoTest’, in which the continuous integration unit tests are implemented and
further tests will be added in the future.

The GitHub infrastructure provides not only storage and versioning, but also one important avenue for
dissemination of the developed ontology. The repositories and all of their content are publically
available and may be downloaded in full by any interested user. While it might be objected that the
programmer-oriented user interface of the GitHub system might deter users who are not from a
technical background, we observe that many scientists within increasingly data-driven scientific
paradigms including that of nanoscience are comfortable in technical environments. Moreover, the
GitHub webpages provide a web interface for users to suggest changes and make comments, without
leaving the browser. Finally, we stress that this is only one of several dissemination routes via which we
will make the ontology available, and other routes will be tailored to different classes of user based on
the outcomes of our user requirements analysis investigations (WP1).

3.1.1 ONTOLOGIES REPOSITORY
The ‘ontologies’ repository is structured as follows (See Figure 1). Within the main folder, there is a
README.md file which describes the repository (as recommended by GitHub). There is also the main
enanomapper.owl ontology file (which will be further described below). There are three directories
organizing further content in subsidiary nested folders: ‘external’, which contains the content modules
which have been extracted from external ontologies (as described below), ‘internal’, which contains
internally developed content modules, and ‘scripts’, which is where the software modules needed for
supporting the ontology development process are stored.

http://www.github.com/
http://github.com/enanomapper/

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 9 of 17

Figure 1: The eNanoMapper ontologies repository

Files within the repository can be accessed both via an online browser interface, which allows viewing of
the commit history and any comments or open issues that have been logged, or as “raw” files which is
the avenue through which the latest version of the content can always be accessed online. For example,
an extract of the commit history for the enanomapper.owl ontology file is shown in Figure 2.

Figure 2: The eNanoMapper ontologies repository commit history

The URL to access the raw content of the enanomapper.owl file is
https://raw.githubusercontent.com/enanomapper/ontologies/master/enanomapper.owl. This URL
contains the path to the project and repository as well as the fork label (“master”) of the file.

3.1.2 ONTOTEST REPOSITORY
The ‘ontoTest’ repository is structured as a general Java application using the Maven layout, including a
src/test/java/ directory structure to contain the test classes. The test classes use the JUnit testing
framework (http://junit.org/) to formalize requirements and expected behavior as isolated tests, i.e.,
each imported ontology can be separately tested, while integration tests can be run too. The currently
tested ontologies are the Basic Formal Ontology (BFO, an upper-level organizing ontology); the Chemical
Information Ontology (CHEMINF, for chemical descriptors and attributes); Dublin Core (DC, a small
metadata ontology); the Information Artifact Ontology (IAO, for ontology metadata and categories of
information entity); the NanoParticle Ontology (NPO); the Relationship Ontology of shared relations
(RO); and our integrated eNanoMapper ontology. For each a separate JUnit test class is found in the
https://github.com/enanomapper/ontoTest/tree/master/src/test/java/net/enanomapper/onto/test
folder. Each test class extends a generic AbstractOntologyTest class that defines the tests to be run on

https://raw.githubusercontent.com/enanomapper/ontologies/master/enanomapper.owl
http://junit.org/
https://github.com/enanomapper/ontoTest/tree/master/src/test/java/net/enanomapper/onto/test

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 10 of 17

all ontologies. This class tests whether the OWL file is valid RDF/XML, can be parsed as an OWL
ontology, and runs some general perception of common errors as defined by the OWLAPI
(http://owlapi.sourceforge.net/). More tests will be added later using this same infrastructure. The test
classes also define the mappings of ontology URIs to local instances of the OWL files, overcoming the
problem that not all ontology OWL files can be automatically retrieved from the web using the
respective URIs.

Implementation of the full testing platform is automated using the Jenkins (http://jenkins-ci.org/) build
system software and is available at https://jenkins.bigcat.unimaas.nl/ (Fig. 3):

Figure 3: The Jenkins build system, eNanoMapper installation

For each ontology used by eNanoMapper, the testing platform defines a Jenkins job and in the above
screenshot we see jobs for the various ontologies. Each “ontology” job downloads a recent copy of the
ontology, and may do further integration later on, like defining slices of that ontology, if the
eNanoMapper decided to incorporate only part of the ontology. The Ontology Testing jobs runs the unit
tests on the various ontologies, as defined in the ontoTest repository on GitHub.

Jenkins allows jobs to be automatically run when changes are made to the code repositories in which
the ontologies are stored. It is also configured to rerun the Ontology Testing job when such an event
happens. The test report is provided on the Jenkins page (see Fig. 4), and provide detailed reports on
why a particular unit test failed (not shown). eNanoMapper developers are notified when the number of
failing unit tests changes.

http://jenkins-ci.org/
https://jenkins.bigcat.unimaas.nl/

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 11 of 17

Figure 4: The Jenkins test results for the eNanoMapper ontology tests

3.2 ONTOLOGY DEVELOPMENT

3.2.1 DEVELOPMENT LANGUAGE
The ontology is being developed in the Web Ontology Language (OWL: W3C, 2012). OWL is a standard
approved by the W3C for the representation of domain knowledge embedded in a semantic web
framework. It is increasingly being adopted by the life sciences community for their ontology
development efforts, and the provision of multiple ontologies in the same underlying language aids
interoperability and convergence to a common framework.

OWL ontologies consist of classes, which represent entities in the modelled domain, and properties,
which represent relationships. An example of a class is ‘nanoparticle’ while an example of a property is
‘has_part’. Classes are arranged in a hierarchy using the built-in organizing relationship ‘subClassOf’. If
class A subClassOf class B, then A inherits all of B’s properties. For example, ‘quantum dot’ is a subclass
of ‘nanosphere’: it inherits all the properties of ‘nanosphere’ and has additional properties (in the size
range). OWL is a powerful language in that it allows for logical statements to be built up from basic
constructs (such as the logical operators ‘and,’ ‘or’ and ‘not’ and quantifiers such as ‘only’ and ‘some’) to
capture a sophisticated model of the knowledge in the domain. OWL reasoners are software
implementations that take an ontology expressed in OWL and compute inferences based on the
captured knowledge. Inferences might enhance the knowledge captured, such as discovering additional
subclass relationships that have not been explicitly expressed but can be deduced from the captured
knowledge, or they may detect errors and inconsistencies, thus aiding the ontology development
process.

A feature of the OWL language is that the ontology itself, and each item included in it, are embedded in
a Web context through being identified with a URI which should map to a resolvable URL. For the
eNanoMapper project, the ontology URIs are created in the URL space
http://purl.enanomapper.org/onto/. Each class in the ontology is associated with a numeric identifier
suffixed to the core class URI. For example, a class with id 23 is given the URI
http://purl.enanomapper.org/onto/ENM_000023.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 12 of 17

3.2.2 METADATA STANDARDS

The OWL language allows for the sophisticated capture of metadata in the form of annotations to all
parts of the ontology. For eNanoMapper, of particular importance is the annotation of metadata at the
class level in the ontology: names, synonyms, definitions, cross-references and curation status. The
annotation properties that we use are supplied by the Dublin Core ontology (DC) supplemented with a
subset of the Information Artifact Ontology (IAO) ontology-metadata ontology. Each class created in the
eNanoMapper ontology is expected to have the following core metadata associated:

- A unique, unambiguous name, captured using the rdfs:label annotation property. The name
should be unique within the ontology and should contain sufficient detail for a novice consumer
of the ontology to understand the entity described at least in broad outline (i.e. no cryptic
codes!)

- A text definition captured using the IAO’s definition annotation property. The text definition
should be one or more full sentences that fully describe the entity, with particular attention to
individuation criteria, i.e. how does that entity differ from its immediate subsumption parent
and its siblings on the same level? The definition should be complete enough to allow ontology
users to determine precisely which class to use for annotation of their data. Optionally, the
definition may be supported with examples of usage (another IAO metadata property) e.g. for
specific descriptions of use in data annotation.

- Synonyms should be captured using the IAO ‘alternative term’ annotation property.
- Cross-references to databases may be captured using the IAO hasDbXref annotation property.

Note: this method of cross-referencing is not to be used for other OWL ontologies in which the
entity appears, as that renders the cross-reference invisible to the machinery of the OWL
language and reasoners. Rather, for inter-ontology references bridging modules should be
created in which the two classes are related using an appropriate OWL language construct, e.g.
EquivalentClasses if they represent the exact same entity.

- To capture the curation status of a class and additional metadata related to the curation of the
ontology, the IAO annotation properties ‘definition editor’, ‘definition source’ and ‘has curation
status’ should be used. By default, if no definition editor, source and curation status are
specified, it can be assumed that the eNanoMapper project WP2 has performed the curation
and that the status is ‘ready for public review’.

3.2.3 CURATION PLATFORM
Curation of the ontology is being performed using the Protégé ontology editor, illustrated in Figure 5
(http://protege.stanford.edu/). Protégé is the de facto standard free and open source OWL ontology
editor. It allows visualization and editing of all aspects of an OWL ontology, and offers a plug-in
framework for flexible extension within which many additional utilities are available. We use Protégé for
editing classes, properties, annotations and axioms. It is also possible to run ontology reasoners within
the Protégé framework and to view errors or save inferences back into the ontology.

http://protege.stanford.edu/

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 13 of 17

Figure 5: Ontology editing in Protégé.

3.3 RE-USING EXTERNAL CONTENT

The eNanoMapper project is committed to a policy of ontology re-use rather than re-invention. This
means that wherever a reasonable candidate ontology can be found covering a relevant portion of
domain content, that ontology or a relevant subset thereof should be included in the eNanoMapper
fully assembled ontology using the OWL imports mechanism, and used in all relevant data annotations
arising from the project. A full description of the target ontologies which are being re-used is out of
scope for this technically-oriented deliverable report, but will be the subject of Deliverable D2.2.

External content may be imported into the ontology in two ways: simple or complex. In the simple case,
the full external ontology is imported into the primary ontology file, as illustrated in Figure 6.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 14 of 17

Figure 6: Ontology imports within Protégé

However, there are various reasons this may not be possible or preferred, including:

- The external ontology may include content which is irrelevant or incorrect which we would not
like to include.

- The external ontology may include content which overlaps with the content included in another
external ontology that we would also like to import (it is very important not to end up with
duplicates within the final ontology!)

- The external ontology may be structured in a fashion that we do not fully agree with, such that
we want to re-use their classes but not their hierarchy or relations.

In such cases, we will aim to follow the MIREOT methodology (Courtot et al., 2011) for re-using external
ontology content without fully importing the external ontology. Specifically, we will create a custom
subset of the external ontology for our use, referenced extensively back to the original source ontology,
and then import that subset. The subset creation can be done manually or automatically. Eventually we
would need to automate the process fully in order to cope with updates of source ontologies and
releases of our ontology; at the beginning of the project while we are evolving our scripts we may find
that we must initially prepare files manually. The OntoFox tool (Xiang et al., 2010) is of use in this
process. OntoFox allows extraction of subsets from ontologies according to different parameters. For
example, a root term can be specified and all descendants can be extracted into a module; parameters
control whether to include relationships and annotations or not. The most important aspect of
ontology-reuse in this fashion is that the URI of each class that is re-used is used as it is identically in the
source ontology, and that the use is appropriately cited. For our purposes, it is important that the whole

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 15 of 17

process can be regularly updated, as we expect the source ontologies will change and we need to be
able to seamlessly remain up-to-date.

Modules which are prepared for import should be appropriately named and identified (e.g.
http://purl.enanomapper.org/onto/external/NCBITaxon_import.owl) and placed in the external folder
in the GitHub repository. From the new location, the module can then be imported into the main
ontology.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 16 of 17

4. CONCLUSION

In this report we have described the technical infrastructure that has been put in place in order to
facilitate the ontology development – Work Package 2 of the eNanoMapper project. While the
infrastructure that we have created thus far is expected to remain stable for the duration of the project,
we may find that as the project develops we add further technical infrastructure, including additional
utility scripts and automated tests, additional software for the production pipeline and added plugins for
facilitation of reporting. Therefore, this report may need to be updated during the lifecycle of the
project. Furthermore, we undertake to ensure that all of our technical infrastructure is always
appropriately and fully documented in the appropriate technical channels for documentation, e.g. code
is appropriately commented, repositories have full and useful readme files, and so on.

eNanoMapper 604134 12 August 2014 DELIVERABLE
REPORT D2.1

Page 17 of 17

5. BIBLIOGRAPHY

Courtot, M., Gibson, F., Lister, A. L., Malone, J., Schober, D., Brinkman, R. R., Ruttenberg, A. (2011)
MIREOT: The minimum information to reference an external ontology term. Journal of Applied Ontology,
Volume 6 Issue 1, Pages 23-33.

W3C OWL Working Group (2012), OWL 2 Web Ontology Language: Document Overview (Second
Edition), W3C Recommendation, available at http://www.w3.org/TR/owl2-overview/, 11 December
2012.

Xiang, Z., Courtot, M., Brinkman, R. R., Ruttenberg, A., He, Y. (2010) OntoFox: web-based support for
ontology reuse. BMC Research Notes, 3:175.

http://www.w3.org/TR/owl2-overview/

