Filling knowledge gaps in Nanotoxicology with Read Across Predictions, Practice & Requirements

Christoph Helma, Micha Rautenberg, Denis Gebele

in silico toxicology gmbh, Basel, Switzerland

Contents

- lazar read across framework
- Adjustments for nanoparticles
- Data requirements
- Comparison of algorithms and descriptors
- Exercises
- Feedback

lazar read across framework

A reproducible version of the read across procedure commonly used in toxicological risk assessment (based on the k-nearest-neighbor algorithm)

- Search in a database for similar nanoparticles (*neighbors*)
- Build a local QSAR model with these neighbors
- Use this model to predict the activity of the query substance

lazar was originally designed for small molecules with a defined chemical structure. The nanoparticle extension was developed and validated within the eNanoMapper project.

Similarity calculation

Requirements

Descriptors (features) for the query substance and the neighbor candidate

Observation

A large number of irrelevant features can lead do meaningless similarity estimates

Relevant features

Features that correlate significantly with toxicity (Pearson correlation p-value < 0.05)

Weighted cosine similarity

- Scaled and centered relevant feature vectors
- Feature contributions weighted by Pearson correlation coefficient
- Similarity threshold: sim > 0.5

Local regression algorithms

- Weighted average
- Weighted partial least squares regression
- Weighted random forests

Partial least squares and random forest models use the caret R package with default settings

Prediction intervals: 1.96*RMSE of carets bootstrapped model predictions

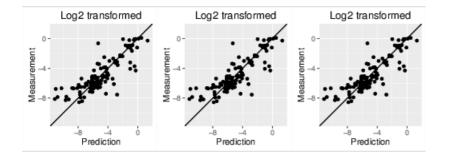
If PLS/RF modelling or prediction fails, lazar resorts to using the weighted average method.

Validation

- 3 repeated 10-fold crossvalidations with independent training/test set splits
- No fixed random seed for training/test set splits, to avoid overfitting and to demonstrate the variability of validation results due to random training/test splits.
- Separate feature selection for each training dataset to avoid overfitting

Data requirements

- At least 100 examples per toxicity endpoint for statistically meaningful validation results
- At least non-empty intersection of descriptors for calculation of similarities


Net cell association endpoint of the *Protein corona* dataset (121 gold and silver particles)

10-fold crossvalidations

Descriptors	Algorithm		r ²			RMSE
Physchem	WA	0.42,	0.46,	0.48	2.02,	1.94, 1.92
Physchem	PLS	0.53,	0.54,	0.49	1.83,	1.8, 1.9
Physchem	RF	0.53,	0.52,	0.54	1.82,	1.84, 1.79
Proteomics	WA	0.66,	0.63,	0.63 *	1.58,	1.62, 1.66 *
Proteomics	PLS	0.59,	0.66,	0.63 *	1.74,	1.56, 1.65 *
Proteomics	RF	0.66,	0.65,	0.63 *	1.56,	1.59, 1.64 *
All	WA	0.73,	0.66,	0.66 *	1.41,	1.57, 1.58 *
All	PLS	0.67,	0.64,	0.69 *	1.53,	1.63, 1.5 *
All	RF	0.69,	0.69,	0.7 **	1.51,	1.5, 1.46 **

Gold and silver particles included!

Correlation plot

Correlation of log2 transformed net cell association measurements with random forest predictions using physchem properties and protein corona data.

Links

Nano-lazar GUI

https://nano-lazar.in-silico.ch

Lazar (source code)

https://github.com/opentox/lazar

Presentation (source code)

https://github.com/opentox/nano-lazar-paper

Docker image

https://hub.docker.com/r/insilicotox/nano-lazar-paper/

Nano-lazar development version

https://nano-lazar-dev.in-silico.ch/predict

Exercises

Try the nano-lazar versions at

Old (stable) version (physchem only)

https://nano-lazar.in-silico.ch

Next release

https://nano-lazar-dev.in-silico.ch/predict

Questions

- Do you think that nanoparticle predictions based on physchem parameters are a practical approach
- Do you think that nanoparticle predictions based on proteomics measurements are a *practical* approach
- What would you expect from a nanoparticle read-across application
 - User input
 - Prediction output
- Comments, bug reports and feature suggestions