Integrating Data and Modelling

Haralambos Sarimveis, National Technical University of Athens

Challenges

Model development

- Modelling services should have easy access to available data
- Integrating and linking heterogeneous data from diverse resources and formulating them for modelling purposes
- Characterisation of nanoparticles (physico-chemical, biological identity-nano/bio interactions)
- Preprocessing and analysing raw data (for example images, omics data, spectral information)
- Integration with theoretical means of describing nanoparticles (quantum mechanical descriptors)
- Use state-of-the-art machine learning and methods and statistical analysis to produced accurate, well validated models with definition of the domain of applicability
- Understanding of mechanisms of actions/ pathway analysis

Serving the community

- Easy access of the community to data, modelling tools and well-validated (published) public models (model repository)
- Provide means of collaboration among modellers and experimentalists (optimal experimental design, interlab testing)
- Cross-platform transform and transfer of produced models
- Annotation of models and produced results using an ontology

eNanoMapper computational infrastructure

OpenTox API Adjustments and Extensions

(documented through swagger, <u>http://enanomapper.ntua.gr:8080/jaqpot/swagger/</u>)

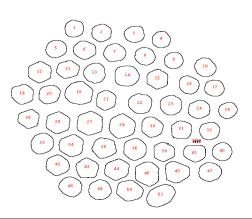
Introduction of PMML support for descriptor definition and model reporting: allows *seamless cross-platform transfer* of the models produced.

One algorithm call for both data preprocessing procedures (scaling, normalization, missing value handling) and calculation of domain of applicability to increase efficiency and avoid creation of intermediate data sets

Descriptor Calculation Algorithms and Methods

Development of web tool for image descriptor calculations. Source code: https://github.com/enanomapper/imageAnalysis

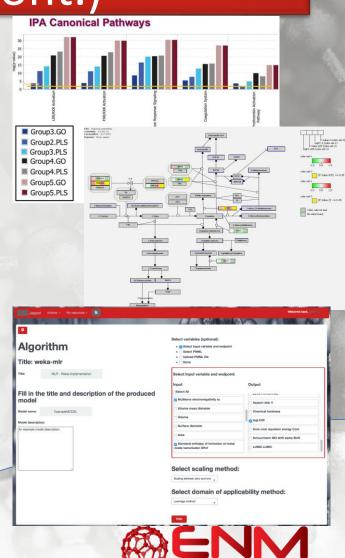
First prototype: http://enanomapper.ntua.gr:8880/imageAnalysis/


- Gene Ontology (GO) descriptors: Clustering of proteomics data based on Gene Ontology information, implemented in R language.
- Otilization of MOPAC OpenTox service for developing Quantum mechanical descriptors for metal oxides
- Extended the Java-based Chemistry Development Kit (CDK) with nanomaterial descriptors

Jaqpot Quattro http://enanomapper.ntua.gr:8880/jaqpot/services/api-d AQIC5wM2LY4SfcziqjwPxhwi Explore

dataset : Dataset API	Show/Hide List Operations Expand Operations Raw
pmml : PMML API	Show/Hide List Operations Expand Operations Raw
bibtex : BibTeX API	Show/Hide List Operations Expand Operations Raw
enanomapper : eNM API	Show/Hide List Operations Expand Operations Raw
model : Models API	Show/Hide List Operations Expand Operations Raw
task : Tasks API	Show/Hide List Operations Expand Operations Raw
algorithm : Algorithms API	Show/Hide List Operations Expand Operations Raw
aa : AA API	Show/Hide List Operations Expand Operations Raw
feature : Feature API	Show/Hide List Operations Expand Operations Raw
user : Users API	Show/Hide List Operations Expand Operations Raw

[BASE URL: http://enanomapper.ntua.gr:8880/jaqpot/services/api-docs]



eNanoMapper computational infrastructure (cont.)

Algorithm and modelling services

- Sextensions and updates of algorithm and modelling services, compatible with API extensions and and fully integrated with the eNanoMapper Database.
- Development of the Conjoiner service that performs the task of transforming the experimental data into a modelling-friendly format, and producing standardized datasets.
- Integration of third party services: R language (OpenCPU), Python, WEKA
- Implementation of statistical and machine learning algorithms (regression, classification, clustering) as web services
- Development of R tool for the creation of optimal QSAR models: RRegrs, <u>https://github.com/enanomapper/RRegrs</u>
- Provide services for optimal experimental design and inter-laboratory comparison
- Enrichment and Pathways Analysis: Using many different approaches, like PathVisio, Cytoscape, Ingenuity Pathway Analysis (IPA) Chipster, GeneOntology, KEGG database.
- Support specific needs of the community: Collaborating with SUN project and RIVM on the development of a web-service for dose-response modelling implementing the benchmark dose (BMD) method.
- Developing a modelling user interface for easy access and use of modelling services, fully integrated with the eNanoMapper database, which can be additionally used for hosting public models.

Future perspectives

- More Data Big Data (high throughput omics data –kinetics data)
- New algorithms and modelling approaches (handle sparse data, big data)
- Integration of modelling approaches (ab-initio modeling, atomistic scale with statistical approaches)
- Hierarchical models integrating systems toxicology with PBPK modelling for detailed multilevel organism/nanoparticle simulation as function of time

FP7-eNanoMapper

"eNanoMapper - A Database and Ontology Framework for Nanomaterials Design and Safety Assessment"

- Grant Agreement: 604134
- Duration: 36 months (1 Feb 2014 31 Jan 2017)

