DELIVERABLE REPORT D3.4

DELIVERABLE REPORT D3.4

ISA-Tab templates for selected set of common bioassays

Deliverable D3.4

GRANT AGREEMENT:	604134
ACRONYM:	eNanoMapper
NAME:	eNanoMapper - A Database and Ontology Framework for Nanomaterials Design and Safety Assessment
PROJECT COORDINATOR:	Douglas Connect GmbH
START DATE OF PROJECT; DURATION:	1 February 2014; 36 months
PARTNER(s) RESPONSIBLE FOR THIS DELIVERABLE:	IDEA

DATE:	21.11.2016
VERSION:	V.1.0.

Call identifier

FP7-NMP-2013-SMALL-7

Document Type	Deliverable Report
WP/Task	WP3/T3.5
Document ID	eNanoMapper D3.4
Status	Final

	 Douglas Connect, GmbH (DC)
	 National Technical University of Athens (NTUA)
	 In Silico Toxicology (IST)
	Ideaconsult (IDEA)
Partner Organisations	• Karolinska Institutet (KI)
	 European Bioinformatics Institute (EMBL-EBI)
	 Maastricht University (UM)
	 Misvik Biology (MB)
	Nina Jeliazkova (IDEA)
	Nikolay Kochev (IDEA)
	Vedrin Jeliazkov (IDEA)
Authors	Penny Nymark (MB)
	Pekka Kohonen (MB)
	Reviewed by Barry Hardy (DC)
Purpose of the Document	To report on the Task 3.5

eNanoMapper	604134 21 Novemb		DELIVERABLE	Page 2 of 38
		2016	REPORT D3.4	

Document History	 Table of Contents, 10/10/2016 First draft, 31/10/2016 Second draft, 14/11/2016 Final draft, 21/11/2016
	5. Completed version, 01/12/2016

604134

21 November 2016

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY	7
2.	INTRODUCTION	8
3.	INVESTIGATION-STUDY-ASSAY	10
	3.1 ISA-JSON NANO EXTENSION (NANO MATERIAL JSON SCHEMA)	11
	3.2 ISA-JSON EXPORT	13
	3.2.1 ISA-JSON implementation	14
4.	SPREADSHEET DATA TEMPLATES	17
	4.1 "ISA-TAB LOGIC" TEMPLATES	17
	4.1.1 Configuration files for the NANoREG templates	20
	4.2. IOM TEMPLATES	23
5.	NANOREG DATA TRANSFER	28
6.	CONCLUSION	31
7.	BIBLIOGRAPHY	32
A١	INEX 1. NANoREG EXCEL FILES OVERVIEW	33

604134

21 November 2016

TABLE OF FIGURES

Figure 2. eNanoMapper isa-api fork at GitHub repository. The new JSON-schema for nanomaterial description. 11 Figure 3. The JSON schema for Material/Substance consists of the basic nominal nanomaterial characteristic and array of material components. 12 Figure 4. JSON schema for material component. The component is represented by basic description and an array of linkages to other components. 13 Figure 5. eNanoMapper web page with download links in different formats 14 Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes, (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file. 14 Figure 7 Mapping between eNanoMapper and ISA data models 16 Figure 9 The data template for endpoint cell viability , MTS assay 21 Figure 10 Documentation site providing templates and configuration files download 22 Figure 11 IOM template: Test conditions sheet 23 Figure 13 IOM template: Test summary sheet 26 Figure 14 IOM template: Test summary sheet 26 Figure 15 NANOREG database application front page 28 Figure 16 Search application with NANOREG data 29 Figure 17 NANOREG data availability 30
Figure 3. The JSON schema for Material/Substance consists of the basic nominal nanomaterial characteristic and array of material components.12Figure 4. JSON schema for material component. The component is represented by basic description and an array of linkages to other components.13Figure 5. eNanoMapper web page with download links in different formats14Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes, (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file.14Figure 7 Mapping between eNanoMapper and ISA data models16Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
characteristic and array of material components.12Figure 4. JSON schema for material component. The component is represented by basic description and an array of linkages to other components.13Figure 5. eNanoMapper web page with download links in different formats14Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes, (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file.14Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 4.JSON schema for material component. The component is represented by basic description and an array of linkages to other components.13Figure 5.eNanoMapper web page with download links in different formats14Figure 6.ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes, (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file.14Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8.The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
an array of linkages to other components.13Figure 5. eNanoMapper web page with download links in different formats14Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes,(ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and adata file.14Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 5. eNanoMapper web page with download links in different formats.14Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes,(ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and adata file14Figure 7 Mapping between eNanoMapper and ISA data models.16Figure 8. The NANOREG template for endpoint cell viability , MTS assay.21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net.22Figure 10 Documentation site providing templates and configuration files download.22Figure 11 IOM template: Test conditions sheet.23Figure 13 IOM template: Test results sheet.26Figure 15 NANOREG database application front page.28Figure 16 Search application with NANOREG data.29
Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes,(ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and adata file.Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download23Figure 12 IOM template: Test conditions sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data
 (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file. 14 Figure 7 Mapping between eNanoMapper and ISA data models 16 Figure 8. The NANOREG template for endpoint cell viability , MTS assay 21 Figure 9 The data templates documentation menu at https://search.data.enanomapper.net 22 Figure 10 Documentation site providing templates and configuration files download 22 Figure 11 IOM template: Test conditions sheet 23 Figure 12 IOM template: Raw data sheet 25 Figure 13 IOM template: Test results sheet 26 Figure 15 NANOREG database application front page 28 Figure 16 Search application with NANOREG data
data file.14Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 7 Mapping between eNanoMapper and ISA data models16Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 8. The NANOREG template for endpoint cell viability , MTS assay21Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 9 The data templates documentation menu at https://search.data.enanomapper.net22Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 10 Documentation site providing templates and configuration files download22Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 11 IOM template: Test conditions sheet23Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 12 IOM template: Raw data sheet25Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 13 IOM template: Test results sheet26Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 14 IOM template: Test summary sheet26Figure 15 NANOREG database application front page28Figure 16 Search application with NANOREG data29
Figure 15 NANOREG database application front page 28 Figure 16 Search application with NANOREG data 29
Figure 16 Search application with NANoREG data
Figure 17 NANoREG data availability

604134

21 November 2016

GLOSSARY

Abbreviation / acronym	Description			
SPARQL	SPARQL Protocol and RDF Query Language) is an RDF query language, that is, a semantic query language for databases			
RDF	ResourceDescriptionFramework(RDF)https://www.w3.org/RDF/https://www.w3.org/RDF/			
ISA-TAB	Built around the 'Investigation' (the project context), 'Study' (a unit of research) and 'Assay' (analytical measurement) data model and serializations (tabular, JSON and RDF). http://isa-tools.org/			
ISA-JSON	http://isa-tools.org/2016/10/release-of-the-isa-specs/			
ISA-TAB-NANO	ISA-TAB-Nano extends ISA-TAB https://wiki.nci.nih.gov/display/icr/isa-tab-nano			
JSON	Javascript Object Notation http://www.json.org/			
NANoREG	FP7 NANOREG – A common European approach to the regulatory testing of Manufactured Nanomaterials, grant agreement 310584			
NANoREG templates	http://www.nanoreg.eu/media-and-downloads/templates			
NSC, NanoSafety Cluster	http://www.nanosafetycluster.eu/			

604134

21 November 2016

1. EXECUTIVE SUMMARY

Data preparation is an activity pertinent to most of the NanoSafety Cluster (NSC) projects. The importance of standardized means for data logging and data sharing is acknowledged by both data providers and data users, but the current practice consists mostly of disparate efforts, resulting in incompatible files. The ISA-TAB (Investigation-Study-Assay) and ISA-TAB-Nano formats are cited in many projects, but not used due to several reasons, e.g. lack of user friendliness or the steep learning curve needed to adopt the format. Instead, variations of the ISA have appeared, such as the ISA-TAB-Logic templates, developed and released under open license by the NANoREG project. The ISA-TAB-Logic templates are Excel files, with a number of fields describing the material sample, physchem characterisation and bioassays. Various flavours of Excel templates are used or considered for adoption by several NSC projects. We have cleaned, annotated and created configuration files for the publicly released templates, enabling direct import into the database through a web browser or programmatically. Ontology annotation is ongoing, with close collaboration with eNanoMapper WP2. We developed tools to automatically generate ISA-JSONv1 (the new specification of ISA) from existing nanomaterial safety data. We also developed Material Schema extension for the new ISA-JSON specification, which is the counterpart of the "material file" in the ISA-Tab-Nano specification. To allow for easy adoption, we have created a documentation site, describing the developments above, accessible via the eNanoMapper tutorials repository at Github https://github.com/enanomapper/tutorials/tree/master/DataTemplates and via menu "Data templates" of the search application at https://search.data.enanomapper.net

Being able to read the Excel spreadsheets and write the internal data model into ISA-JSON files accomplishes the goal of automatically generating the ISA files, and enables exporting query results from the database in any desired format. The templates provided are coupled with configuration files, enabling import into the database through a simple web form or programmatically via Application Programming Interface. The use of the tools and templates described in this deliverable is also foreseen within the NSC projects enabling harmonized collection of data, which will eventually be compatible across projects.

eNanoMapper

604134

21 November 2016

2. INTRODUCTION

ISA (Investigation-Study-Assay)¹[1] is a general purpose multi-layer platform for description of complex meta-data needed for the interpretation of experiments developed by S. Sansone's group at the University of Oxford e-Research Centre. ISA-Tab is the legacy format, relying on tab delimited files. During the last year a new serialisation was designed and implemented by the same team at University of Oxford, namely ISA-JSON, relying on JSON files (JavaScript Object Notation). The ISA-JSON release (October 2016) includes a JSON schema and an ecosystem of tools used for creating, validating and visualizing documents. The ISA-Tab-Nano project is an effort of the National Cancer Institute (NCI), National Cancer Informatics Program (NCIP) and Nanotechnology Informatics Working Group (US Nano WG) and an attempt to extend the ISA-Tab format by introducing a separate file for describing the (nano)material components. The ISA-Tab-Nano is documented in a publication [2] and in the US Nano WG wiki², which include example spreadsheets, but no tools to parse the files and to enforce the specification. For this reason, the practical use of ISA-Tab-Nano is not straightforward, as demonstrated by the efforts of the FP7 NanoPuzzles project [3] and the introduction of "ISA-Tab-logic" templates by the FP7 NANOREG project.

With the previous experience of formatting experimental data as ISA-Tab files manually being very time consuming [4], we have been exploring various solutions to improve the user friendliness. Taking into account the observation that the majority of EU NanoSafety Cluster projects prefer to prepare their experimental data using custom spreadsheet templates, we have previously reported the pragmatic approach of the eNanoMapper WP3 team, implementing a configurable Excel parser, able to parse diverse spreadsheets into the same internal data model and export the data from this data model into different formats [5]. This allows us to provide format converters (Figure 1).

eNanoMapper

604134

21 November 2016

¹ <u>http://isa-tools.org/</u>

² <u>https://wiki.nci.nih.gov/display/icr/isa-tab-nano</u>

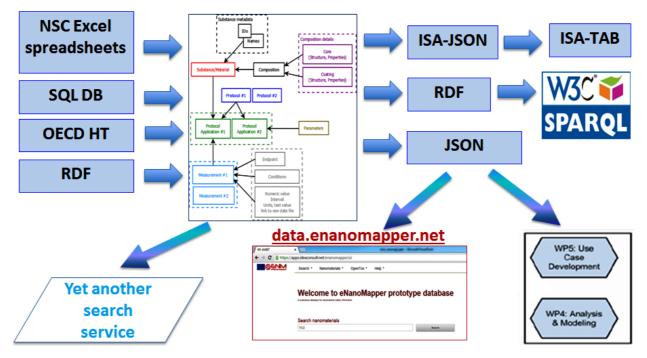


Figure 1. The common eNanoMapper data model enables conversions between different formats.

The new ISA-JSON specification is designed around the concept of "core" ISA schema and "extensions". It is expected that the University of Oxford team develops and maintains the core, while different communities develop the extensions. The support for nanomaterials fits very well in this scheme as an extension, and here we report the development of a (nano)material extension for ISA-JSONv1. We have implemented tools for converting the internal model of the eNanoMapper database into ISA-JSONv1 and provide tools for generating ISA-JSON files. If needed, the ISA-JSON files can be translated into legacy ISA-TAB via the tools provided by the ISA team.

Finally, we report a large effort of cleaning, configuring and providing Excel spreadsheet templates for data entry, based on the publicly released NANOREG templates. These templates are now coupled with JSON configuration files, enabling direct import into the database and are ready to use by the data providers. The templates and related documentation is available at http://ambit.sf.net/enanomapper/templates. The review of the content of the templates (whether the fields included are all necessary and sufficient to describe the experiment) is not a subject of this deliverable, but was initiated by several efforts and meetings on NanoSafety Cluster level as well as a dedicated task in the NanoSafety Cluster Working group 4 (Databases) and discussions on the same topics in various projects, considering the use of the templates.

eNanoMapper	604134	21 November	DELIVERABLE	Page 9 of 38
		2016	REPORT D3.4	

3. INVESTIGATION-STUDY-ASSAY

ISA (Investigation-Study-Assay) includes three major layers: *Investigation, Study and Assay* where the actual experimental readouts are stored in an additional data layer. Since the ISA version 1 published in 2008, the ISA platform implementation relies on tab delimited text files and the file format representation is known as ISA-Tab. The ISA-Tab-Nano project is an effort of the National Cancer Institute (NCI), National Cancer Informatics Program (NCIP) and Nanotechnology Informatics Working Group (US Nano WG). The ISA-Tab-Nano extension³, includes an additional material file within the study layer, which is used for the description of the NM composition and nominal NM characteristics (size, shape, as reported by the manufacturer).

The ISA group started migration in 2015 to a new JSON format, instead of tab delimited files as more flexible and efficient way to store the experimental meta-data. Currently, there are ISA v1 and ISA v2 JSON versions. The ISA v2 is based solely on JSON, where the backward compatibility with the ISA v1 and ISA-TAB format is preserved via ISA-tools project utilities.

The ISA team develops and maintains documentation⁴ and tools⁵ supporting the new ISA ISA-JSON formats. The ISA-JSON specification is based on a set of JSON schemas used to validate the syntactical and logical correctness of the ISA-JSON information. It distinguishes between core components and extensions, for example the support for nanomaterials is considered an extension. The JSON schemas describe various components of the 3 layers of ISA platform (i.e. investigation, study, assay, sample, source, ontology annotation, etc.). The schemas are available at GitHub:

https://github.com/ISA-tools/isaapi/tree/master/isatools/schemas/isa model version 1 0 schemas/core

The ISA-JSON specification was officially released at the end of October 2016 <u>http://isa-tools.org/2016/10/release-of-the-isa-specs/</u>[6]

³ <u>https://wiki.nci.nih.gov/display/icr/isa-tab-nano</u>

⁴ <u>https://isatools.readthedocs.io/en/latest/</u>

⁵<u>https://github.com/ISA-tools/isa-api</u>

3.1 ISA-JSON NANO EXTENSION (NANO MATERIAL JSON SCHEMA)

We have developed a Substance/Material JSON schema which is a nanomaterial extension of ISA-JSON v1, the counterpart of the ISA-Tab-Nano format. The schema is available at the *enanomapper/isa-api* fork at GitHub in folder ".../isa_model_version_1_0_schemas/material", a new subfolder of the folder containing the core ISA schema (Figure 2):

https://github.com/enanomapper/isaapi/tree/master/isatools/schemas/isa model version 1 0 schemas/material

<pre>% enanomapper / isa-api forked from ISA-tools/isa-api</pre>					
<> Code	្រិ Pull requests 0	Projects 0	🔲 Wiki		III Graphs
Branch: maste	r▼ isa-api / isatoo	ls / schemas / isa	a_model_ver	rsion_1_0_sc	chemas / material /
This branch i	s 18 commits ahead, 2	commits behind ISA	A-tools:master	r.	
🛐 ntk73 Ac	🔯 ntk73 Added new constituent properties: characteristics and ontologyAnnotat 🚥				
Constitue	nt_schema.json	Added new o	onstituent pro	operties: chara	acteristics and ontologyA
mcm_mat	terial_schema.json	Added new o	onstituent pro	operties: char	acteristics and ontologyA

Figure 2. eNanoMapper isa-api fork at GitHub repository. The new JSON-schema for nanomaterial description.

The main JSON schema (<u>mcm material schema.json</u>) defines a material (substance) with several basic properties: *id*, *lotIdentifier*, *name* etc (Figure 3). The material composition is an array of constituents.

eNanoMapper	604134	21 November	DELIVERABLE	Page 11 of 38
		2016	REPORT D3.4	U


```
$schema : <u>http://json-schema.org/draft-04/schema#</u>
```

title : Material

description : Definition of Material (or Substance)

type : object

- ▼ properties {14}
 - ▶ @id {2}
 - ▶ lotIdentifier {1}
 - ▶ name {2}
 - sourceName {1}
 - ▶ root {2}
 - ▶ constituents {2}
 - description {1}
 - ▶ synthesis {1}
 - designRationale {1}
 - intendedApplication {2}
 - characteristics {2}
 - mcmType {2}
 - chemicalName {2}
 - dataFiles {2}

```
Figure 3. The JSON schema for Material/Substance consists of the basic nominal nanomaterial characteristic and array of material components
```

A separate helper JSON schema (<u>constituent schema.json</u>) is implemented for definition of all components of the nanomaterial (Figure 4). The composition of a nanomaterial may contain one or several components. Each component has a role (core, coating, etc.) and linkages to other constituents. The linkage describes the relation between two components. For example, two components may be covalently bonded, one being embedded or encapsulated within another constituent etc.


```
{
 "$schema": "http://json-schema.org/draft-04/schema#",
  "title": "Constituent",
  "description": "Definition of a constituent of a material or another
   constituent",
  "type": "object",
  "properties":{
   "@id": { "type": "string", "format": "uri" },
    "name": {
     "type": "string",
     "description": "Constituent name"
    },
   "role": { "type": "string" },
   "description": { "type": "string" },
   "synthesis": { "type": "string" },
   "linkages":{
     "type": "array",
      "items": {
       "type": "object",
        "properties": {
          "constituent": {"type": "string", "format": "uri" },
         "linkageType": {"type": "string" }
       }
     }
   },
    "characteristics" : {
     "type" : "array",
     "items" : {
       "$ref": "material_attribute_value_schema.json#"
     }
    },
    "ontologyAnnotation" : {
   ""$ref": "ontology_annotation_schema.json#"
   }
```

Figure 4. JSON schema for material component. The component is represented by basic description and an array of linkages to other components

3.2 ISA-JSON EXPORT

The export to ISA-JSONv1 is enabled for each data collection (<u>https://data.enanomapper.net/bundle</u>) in the eNanoMapper database, indicated by the ISA icon (Figure 5).

eNanoMapper	604134	21 November	DELIVERABLE	Page 13 of 38
		2016	REPORT D3.4	

646ab3a4- ccb5-11e5-	JRC Representative	¥1	Repository of representative nanomaterials with the purpose	NanoWiki http://dx.doi.org/10.6084/m9.fs	where 1320208 of	Lisense 13*
946b: 80997350bfa7	Nanomaterials		that many laboratories can measure physicochemical and biological properties on them.		Children and Child	http://orcid.org/0000 0001-7542-0286 ో
Details				Download as		
Substances	(51)	Brows	e substances	XLSX SV ISA		
Chemical stri	uctures (7)	Brows	e chemical structures			
Dataset		Brows	e dataset	XLSX CSV		5
Properties (4	0	Browse	e properties			

Figure 5. eNanoMapper web page with download links in different formats

Converting files into ISA-JSON format is also possible without import into the database. More information on how to convert input file in supported formats into ISA-JSON or RDF is available at http://ambit.sourceforge.net/enanomapper/templates/convertor.html

ISA-JSON export software tools are available at:

https://svn.code.sf.net/p/ambit/code/trunk/ambit2-all/ambit2-apps/ambit2-export/

3.2.1 ISA-JSON IMPLEMENTATION

The initial support for exporting data into ISA-JSON format was previously reported in D3.2. In the reporting period we continued the improvement of the ISA-JSON export library and developed new features. The basic workflow for the ISA-JSON export is shown in Figure 6.

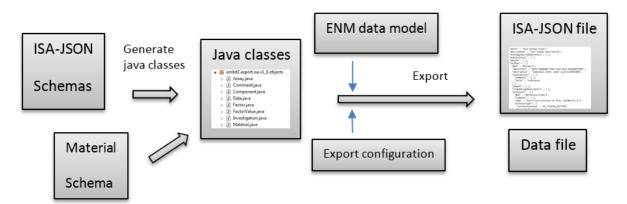


Figure 6. ISA export workflow: (i) ISA-JSON schemas and Material schema are converted to Java classes, (ii) eNanoMapper data records are mapped into ISA model; (iii) data is serialized as a ISA-JSON file and a data file.

eNanoMapper

604134

21 November 2016 DELIVERABLE REPORT D3.4 Page 14 of 38

The ISA data model is defined by JSON schemas which describe various components of the 3 layer of the ISA platform (i.e. investigation, study, assay, as well as sample, source, ontology annotation, etc.).

On the basis of ISA-JSON schemas we generate Java classes, implementing the ISA data model (see Figure 6). The Java objects are filled with the data either from the eNanoMapper database or from input files. These objects are serialized as JSON files (the actual ISA-JSON format files). During the first implementation, reported in D3.2, we used the jsonschem2pojo software tool (<u>http://www.jsonschema2pojo.org/</u>) to generate java classes from ISA-JSON schemas. With the constant updates and increasing complexity of the schemas the jsonschem2pojo tool turned out to be inefficient for the latest schema versions. In response, we developed our own tool for java class generation⁶. Additionally, the utilities for storage of the actual measurements data were improved (ExternalDataFileManager, the extra layer to the ISA platform).

eNanoMapper

604134

21 November 2016

⁶<u>https://svn.code.sf.net/p/ambit/code/trunk/ambit2-all/ambit2-apps/ambit2-export/src/test/java/ambit2/export/isa/codeutils/</u>

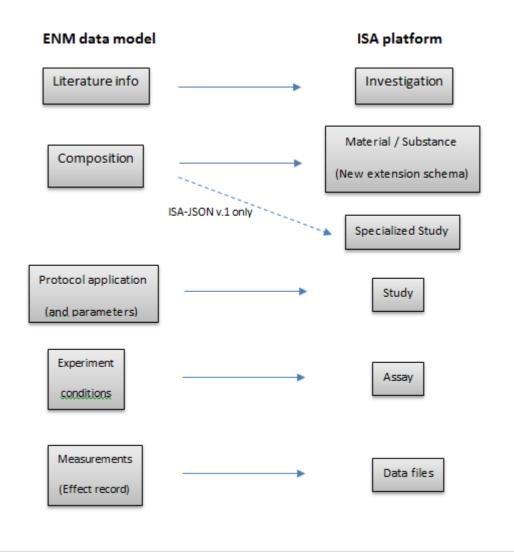


Figure 7 Mapping between eNanoMapper and ISA data models

Figure 7 summarizes the basic mapping between eNanoMapper data model and ISA platform. The correspondence between the three major layers of ISA platform to the eNanoMapper data model was established. Recently the ISA team announced the new isa-api validation and conversion tools which are currently being used for testing the generated by eNanoMapper ISA-JSON files. The isa-api tools allow converting ISA-JSON files into legacy ISA-TAB files and vice versa. Being able to write the internal data model into ISA-JSON files accomplishes the goal of automatically generating the ISA files, and enables exporting query results from the database in a standard and validated ISA format. The ISA-JSON v1 files can be converted to the legacy ISA-TAB files via the Python tools available at http://isa-tools.org/.

eNanoMapper	604134	21 November	DELIVERABLE	Page 16 of 38
		2016	REPORT D3.4	

4. SPREADSHEET DATA TEMPLATES

With previous experience of formatting experimental data as ISA-TAB files manually being very time consuming, we have been exploring various solutions to improve the user friendliness of data preparation. Taking into account the observation that the majority of EU NanoSafety Cluster projects prefer to prepare their experimental data using custom spreadsheet templates, the eNanoMapper WP3 developed tools to directly read the spreadsheets and import into the database and/or convert into ISA-JSON or semantic formats.

The development of the configurable Excel parser enabling import of NanoSafety Cluster Excel templates was reported previously. The parser is embedded in the web application, allowing to upload NSC spreadsheets through a web form. The tool was improved and enhanced with new features. A command line application enabling file conversion without importing into the database was also developed. The configuration metadata for the parser is defined in a separate file, mapping the custom spreadsheet structure into the internal eNanoMapper storage components. Details on the configuration syntax and a user guide with examples is available at http://ambit.sourceforge.net/enanomapper/templates/convertor.html.

4.1 *"ISA-TAB LOGIC"* TEMPLATES

The NANOREG project released a large set of Excel templates under open license, available at <u>http://www.nanoreg.eu/media-and-downloads/templates</u>. As of October 2016, there are templates for 31 phys-chem, 27 in-vitro and 35 in-vivo assays. While not strictly following the ISA-TAB and ISA-TAB-Nano formats, the NANOREG templates have been designed around *ISA-Tab-logic*, i.e. structuring the data in investigation-study-assay related groups. The Excel format was selected to ensure user friendly means of data logging for the NANOREG project partners. The NANOREG templates are organized as one spreadsheet per assay, multiple NM can be entered as rows. One Excel file may contain more than one assay, measuring the same endpoint. The metadata is organised in several groups:

Sample information: Contains information about the NM (including names, ID, supplier, vial number and replicate number, as well as dispersant). The reporting organisation, operator and date of the experiment are also in this section.

Module (phys-chem, in-vitro or in-vivo), the endpoint (e.g. cell viability), and the assay name (e.g. "Alamar blue").

eNanoMapper	604134	21 November	DELIVERABLE	Pa
		2016	REPORT D3.4	

Method and instrument information: Any parameter describing the experiment, including cell lines, instrument, controls, time points, concentrations. These differ widely across different experiments. This section includes a subgroup "size distribution", providing placeholders for size distribution measured for the sample (including details on the dispersion protocol and dispersion medium). These fields are (almost) constant across all templates.

Results: Several columns to specify measurement outcomes, along with uncertainty.

SOP: (reference to the protocol)

Statistics of the number of fields, terms and assays is presented in Table 1.

Table 1 NANoREG template statistics

Excel file	Max number of fields per template	Number of terms	Number of assay templates
	66	535	9
INVITRO_CTA.xlsx	45	53	1
INVITRO_CYTOTOXICITY.xlsx	45	197	4
INVITRO_GENOTOXICITY.xlsx	51	175	4
INVITRO_IMMUNOTOX.xlsx	50	151	3
INVITRO_NMDEPOSITION.xlsx	36	128	3
	41	44	1
INVITRO_VIABILITY.xlsx	73	492	9
INVIVO_ALI.xlsx	32	71	2
INVIVO_BAL.xlsx	57	153	3
INVIVO_BIODISTRIBUTION.xlsx	39	44	1
INVIVO_ECOTOX.xlsx	56	223	4
INVIVO_GENOTOX.xlsx	51	175	4
INVIVO_IMMUNOTOX.xlsx	59	384	7
INVIVO_INHALATION.xlsx	34	153	4

eNanoMapper

604134

21 November 2016

INVIVO_ORGANBURDEN.xlsx	50	58	1
INVIVO_PATTERNDISTRIBUTION.xlsx	55	168	3
INVIVO_PBPK.xlsx	48	58	1
INVIVO_PULMONARY.xlsx	46	203	5
INVIVO_TOXLONGTERM.xlsx	37	164	4
PCHEM_BATCHDISPERSION.xlsx	34	38	1
PCHEM_COMPOSITIONCHEMICAL.xlsx	55	187	4
PCHEM_CRYSTALLINEPHASE.xlsx	28	66	2
PCHEM_DENSITY.xlsx	28	64	2
PCHEM_DUSTINESS.xlsx	44	217	4
PCHEM_IEP.xlsx	42	46	1
PCHEM_POTENTIOMETRY.xlsx	36	43	1
PCHEM_SIZE.xlsx	82	352	7
PCHEM_SOLUBILITY.xlsx	49	140	3
PCHEM_SURFACECHEMISTRY.xlsx	31	137	4
PCHEM_VSSA.xlsx	34	40	1
PCHEM_ZETAPOTENTIAL.xlsx	40	45	1
Grand Total	82	5004	5004

The fields in each template are grouped in several sections, described above (e.g. sample information, size distribution). The list of all sections is presented in Table 2. The section "sample information" is expanded and lists individual fields.

Table 2 Groups of fields in NANoREG templates

Group of fields	Number of fields
analytical parameters - final exposure media	8
analytical parameters - initial exposure media	9

eNanoMapper	604134	21 November	DELIVERABLE
		2016	REPORT D3.4

endpoint_assay	311
header0	421
header1	114
INVALID	2
method and instrument information	1328
results	577
sample information	1454
sample information size distribution	1454 671
size distribution	671
size distribution size distribution - quality parameters	671 19

4.1.1 CONFIGURATION FILES FOR THE NANOREG TEMPLATES

Within the eNanoMapper project (WP3 Database) the templates are analysed, cleaned and regenerated (Figure 8). The original templates are created manually and over a long time (the duration of the NANoREG project) and contain minor errors like typos, slightly different naming for the same type of field, as well as units merged with the field name. With automatic extraction of the fields from all templates it became possible to fix these minor errors (semi-automatically), write units into a separate row and synchronise the naming across the templates. Additionally, for some fields expecting predefined answers (e.g. yes/no or phys-chem/in-vitro/in-vivo for the "module" field) the regenerated templates provide pickup lists. The pickup lists could be extended to other fields, as long as we progress with ontology annotation and identification of the fields which can benefit from a list of predefined ontology terms.

Last but not least, the JSON configurations can now be generated together with the templates, based on list of extracted and annotated fields. The JSON configurations are essential in order to enable import into the database.

eNanoMapper	604134	21 November	DELIVERABLE	Page 20 of 38
		2016	REPORT D3.4	

	А	В	0	2	D	E	F	G	Н	I	J		К	L	M
									SAMPLE INFORMA	TION					
Re	plicate number	NM id code	NM chemis	stry (core)	Cas number	Vial number	Supplier	Material state		Dispersant reference	Sample name	Reporting	organisation	Operator	Date of prepa
												-			
	N	0 Р	Q		R	S		1		U	V	W		X	
										METHO	D AND INSTRUM	IENT INFOR	RMATION		
ate	e of analysis Mo	odule Endpo	int Assay n			Na									
				Dispe	ersion proto	ol Size distrib	ution Siz	e distribution a	nalyse technique	Dispersion medium C	oncentration I	ncubation	time Mean h	ydrodynan	nic diameter
										m	ng/ml H	h	nm		
	Y	Z		AA			<u> </u>	AD	AE	AF	I	AG		AH	
	ř	2		АА	A	B AC		AD	AE	AF		AG		AH	
						-									
۵۹۹	ociated uncerta	inv (sd) PDI	Associated	uncertain		ype Pass num	ber Culti	ire medium con	nposition Plate Vo	olume of incubation m	redium/well Se	eeding Nur	mber of techr	ical replica	ites per condit
~~~		, y (30) i bi	Abbolated	uncertain	y (30)										
	AH	A		AJ	AK	AL		AM	AN	AO		AP	AC	AR	AS
											SULTS				SOP
Nur	mber of technic	al repiCalcula	ted ex Exp	osure tim P	Positive (Pos	tive control te	st(Ic50 (p	ositive contr N	os tested concentra	t Corresponding dose	e/surfacePercer	itage of via	bility nps t Sd	IC50 Re	eferences to so
		µg/cm²	h		μm			це	/ml	µg/cm²				µg/ml	

Figure 8. The NANoREG template for endpoint cell viability , MTS assay

The clean templates and JSON configuration files are available at GitHub repository:

https://github.com/enanomapper/nmdataparser/tree/master/enmconvertor/src/site/resource s/templates

The fields are being matched with ontologies and annotated with the help of WP2 partners (several issues at <u>https://github.com/enanomapper/ontologies/issues</u>). Once the annotation is completed, we will re-generate the templates to include ontology terms.

A user friendly documentation is developed and is accessible via the eNanoMapper tutorials repository at Github:

https://github.com/enanomapper/tutorials/tree/master/DataTemplates

and as a menu "Data templates" of the search application at <u>https://search.data.enanomapper.net/</u> (Figure 9).

eNanoMapper	604134	21 November	DELIVERABLE	Page 21 of 38
		2016	REPORT D3.4	





🛞 eNanoMapper 🛛 🗙		phase a	Color Supplier	Contraction of the local division of the loc	0.e 0 e 0 e 0	ngar telan. 1 🔒 tatuli negan h. 1
← → C	data.enanomap	per.net				
	Home	Search <b>•</b>	Data collections 🔻	Data upload 🔻	Data templates	For developers < Help <
Integrated view o <u>caNanoLab</u>	of 🎯 <u>eNa</u>	noMapper	database <u>[con</u> t	tributors] and	d 🌒 Sea	arch
Data sources (1450)		Hit	s list Selection	_	_	
Nanomaterial type (1			Iters selected!			

Figure 9 The data templates documentation menu at https://search.data.enanomapper.net

The documentation web site (Figure 10) consists of sections for downloading the templates and configuration files for Physicochemical characterisation, In-vitro assays and in-vivo assays, description and download links for the ISA-JSON material schema and convertors as well as <u>interactive display</u> of all fields, cleaned values and annotations.

<image/>		and the processing of the process from	
<section-header>         Nome       P-CHEM       Invitro       Usage       Dabase search</section-header>	<section-header>Note: Petter Inviro Varia Varia Varia Varia Pathenerse Varia</section-header>	templates for nanci X	
<section-header></section-header>	<section-header><section-header></section-header></section-header>	ambit.sourceforge.net/enanomapper/templates/index.html	☆ 🕒 🚺
And the second s	<section-header></section-header>	Home P-CHE	EM In-vitro In-vivo Usage Database search
ADDUCT	ADDUCT		Data templates
Physicochemical characterisation       Image: Complete strength       Image: Complete strengt       Image: Complete strength       Image: C	Physicochemical characterisation   The second provide the second providet provide the second providet providet providet providet prov	eNanoMapper data templates release	About
	See more about ISA-TAB and the new ISA-JSON here		regenerated based on fields defined in the NANOREG templates. The generation process includes cleaning of the JRC fields and facilitates the automatic generation of JSON configuration files, necessary to enable import into an eNanoMapper database instance While not strictly following the ISA-TAB and ISA-TAB-Nano formats, the NANOREG templates have been designed around ISA-Tab-logic, i.e.

Figure 10 Documentation site providing templates and configuration files download

eNanoMappe	er
------------	----

604134

21 November 2016





#### **4.2. IOM TEMPLATES**

A different type of template, developed by the Institute of Occupational Medicine (IOM) (<u>http://www.iom-world.org/</u>) has been used by a number of NSC projects (NANOMMUNE, NANOTEST, ENPRA, MARINA, NANOSOLUTIONS). We reported previously (D3.2) an implementation of NMDataParser features for support of Excel sheets with data blocks (i.e. new JSON section EFFECT_BLOCKS). The import of IOM templates into eNM database is based on EFFECT_BLOCKS syntax. IOM templates contain four major Excel sheets. The first sheet includes information about the sample and the metadata of the experiment (see Figure 11). Most of the data from the first sheet is imported using the standard JSON configurations which define a mapping between spreadsheet fields and eNM database.

38	Dispersion agent:	water with 0,05% BS	A							
39	Dispersion agoint									
	used to disperse - Y / N:	Sonication:	Y	Vortexing:	Y	Stirring:	N			
41				-						
42 Treatment concentr	ration series (C) (µg/ml):	C1	C2	C3	C4	C5	C6	C7	C8	
43	Alter or add as necessary	0	1	5	10	25	50	75	100	
44										
45 CELL LINE/TYPE										
46										
47	Short-Name:	HMDM								
48 Full specific name (note any line		Primary human mon								
49	Supplier:	Karolinska University	/Hospital,	Stockholm,	Sweden - I	ouffy coats f	rom healthy	/ adult blood	donors	
50										
51 CELL CULTURE CONDITIONS										
52										
	lium (Supplier/Lot No.):	RPMI (Sigma, R083)								
	erum (Supplier/Lot No.):	FBS (Gibco, 10500)								
	tion in growth medium:	10%								
	n in treatment medium:	0,05%	Bovine Ser	rum Albumir	(Sigma, A	2058)				
57										_
58 TIMELINE										
59			-							
60 Time points (hours - or s		T1	T2							
	Alter or add as necessary	6	24							
62										

Figure 11 IOM template: Test conditions sheet

Some data fields from the IOM template are defined as dynamic arrays with varying length e.g. concentration series and time points as shown in Figure 11 (rows 43 and 61 respectively). We have implemented additional JSON sections VARIABLES and VARIABLE_MAPPINGS to support dynamic length data structures. Section VARIABLES defines single value variables and variables of type array both used in EFFECT_BLOCKS sections.

```
"VARIABLES": {
    "C": {
        "IS_ARRAY": true,
        "TRIM_ARRAY": true,
        "ITERATION": "ABSOLUTE_LOCATION",
        "SHEET_INDEX": 1,
        "COLUMN_INDEX": "B",
        "COLUMN_INDICES": [
            2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
eNanoMapper 604134 21 November DELIVERABLE Page 23 of 38
```

2016

**REPORT D3.4** 



]



A Database and Ontology Framework for Nanomaterials Design and Safety Assessment

```
],
                "ROW INDEX": 43
        },
        "TimeDesignations": {
                "IS ARRAY": true,
                "TRIM_ARRAY": true,
                "ITERATION": "ABSOLUTE LOCATION",
                "SHEET_INDEX": 1,
"COLUMN_INDEX": "B",
"COLUMN_INDICES": [
                        2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
                ],
                "ROW INDEX": 60
        },
        "TimePoints": {
                "IS ARRAY": true,
                "TRIM_ARRAY": true,
                "ITERATION": "ABSOLUTE_LOCATION",
                "SHEET_INDEX": 1,
"COLUMN_INDEX": "B",
                "COLUMN INDICES": [
                        2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
                1.
                "ROW INDEX": 61
        }
},
"VARIABLE MAPPINGS": [
        {
                "NAME": "Time",
                "KEYS VARIABLE": "TimeDesignations",
                "VALUES VARIABLE": "TimePoints"
        }
```

The time points (T) and concentrations (C) are defined in the first sheet and only referred to in the data sheets. This is supported by the VARIABLE MAPPINGS section in the configuration, e.g. TimeDesignations are mapped onto TimePoints thus in the database values 6 and 24 are stored instead of "T1" and "T2".

eNanoMapper	604134	21 November	DELIVERABLE	Page 24 of 38
		2016	REPORT D3.4	





1	RAW DATA								
2									
3									
4	R	eplicate	1			Replicate	2		
5	T	1	Test1	Test2	Test3	T1	Test1	Test2	Test3
6		0	0.3790	0.3227	0.3065	0	0.3083	0.2844	0.2749
7		1	0.4172	0.4231	0.5052	1	0.2714	0.3682	0.3308
8		5	0.4423	0.3496	0.4885	5	0.3010	0.3529	0.3314
9		10	0.3881	0.4899	0.5255	10	0.2774	0.3195	0.3547
10		25	0.3342	0.5108	0.4843	25	0.3177	0.3228	0.4017
11		50	0.2079	0.2860	0.3809	50	0.2680	0.3158	0.2808
12		75	0.3523	0.4122	0.4708	75	0.3283	0.3233	0.3219
13		100	0.2848	0.3123	0.2751	100	0.4996	0.4047	0.3746
14	Intracellular LDH	Control	1.9174	1.9014	2.0922		2.3849	2.2697	2.4418
15									
16	R	eplicate	1			Replicate	2		
17	T	2	Test1	Test2	Test3	T2	Test1	Test2	Test3
18		0	0.4328	0.3152	0.2977	0	0.5000	0.5321	0.4990
19		1	0.4573	0.3081	0.2786	1	0.7000	0.7359	0.6291
20		5	0.5423	0.3321	0.3031	5	0.9327	0.7567	0.6249
21		10	0.6513	0.4194	0.3123	10	0.9683	0.7637	0.8148
22		25	0.5776	0.4142	0.3809	25	0.8692	0.6953	0.8602
23		50	0.5210	0.4392	0.4147	50	0.8897	0.5451	0.6974
24		75	0.6249	0.7101	0.7360	75	0.8012	0.6068	0.6424
25		100	0.7322	0.6096	0.6711	100	0.7740	0.5059	0.6901
26	Intracellular LDH	Control	1.9378	1.8660	1.9641		1.9960	1.9678	1.8664
27									

Figure 12 IOM template: Raw data sheet

The experimental measurements are described in three different levels of detail accordingly in excel sheets "Raw Data", "Test Results" and "Test Summary". The configuration file specifies which (or all) of these sheets may be imported into the database.

The import configuration principle is the same for each one of these sheets. The EFFECT_BLOCKS section is used to configure simultaneous reading of many effects grouped in sub-blocks of measurement values in accordance to the variations of the experimental factors where for each sub-block, a group of values and associated parameters are configured.





1	TEST RESULTS								
2									
3									
4		Replicate 1					Replicate 2		
5		T1	Titanium Dioxide	Average raw data	100-(Exp/Max*100)	Cell viability (%)	T1	Titanium	Average raw data
6			0	0.336				0	0.289
7			1	0.449	80.554	94.294		1	0.323
8			5	0.427	81.495	95.395		5	0.328
9			10	0.468	79.716	93.312		10	0.317
10			25	0.443	80.788	94.568		25	0.347
11			50	0.292	87.357	102.257		50	0.288
12			75	0.412	82.147	96.158		75	0.32
13			100	0.291	87.394	102.301		100	0.420
14		Intra	cellular LDH Control	1.970					2.365
15									
16		Replicate 1					Replicate 2		
17		T2	Titanium Dioxide	Average raw data	100-(Exp/Max*100)	Cell viability (%)	T2	Titanium	Average raw data
18			0	0.349	84.653	100.000		0	0.510
19			1	0.348	84.678	100.029		1	0.688
20			5	0.393	82.718	97.715		5	0.771
21			10	0.461	79.702	94.152		10	0.849
22 23			25	0.458	79.854	94.331		25	0.808
23			50	0.458	79.821	94.293		50	0.711
24			75	0.690	69.605	82.224		75	0.683
25 26			100	0.671	70.458	83.231		100	0.657
26		Intra	cellular LDH Control	1.923					1.943
27									

Figure 13 IOM template: Test results sheet

In the case of the sheet "Test results" (see Figure 13), the effects block contains 4 sub-blocks defined by varying the replicate and time points. For each sub-block, a group of values is defined by varying the concentrations. In the database each measurement value is stored together with 3 parameters: time point, replicate and concentration.

1	TEST SUMMARY				
2	Titanium Dioxide				
3	NM-103 (TiO2)				
4		T1		Average	St Dev
5			NM-103 (T	i02)	
6			0	100.00	0.00
7			1	94.80	3.53
8			5	96.18	1.89
9			10	95.27	3.07
10			25	95.90	1.51
11			50	100.11	2.12
12			75	96.68	1.63
13			100	98.99	4.25
14					
15		T2		Average	St Dev
16			NM-103 (T	iO2)	
17			0	100.00	0.00
18			1	97.85	6.21
19			5	94.27	6.68
20			10	90.83	7.19
21			25	91.32	5.76
22			50	92.85	2.74
23			75	85.48	4.88
24			100	86.74	5.01

Figure 14 IOM template: Test summary sheet

eNanoMapper

604134

21 November [ 2016 ]



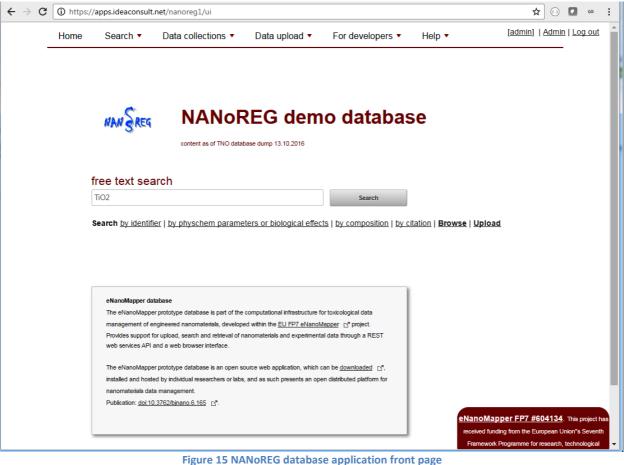


In the case of the sheet "Test summary" (see Figure 14), the effects block contains 2 sub-blocks defined by varying only the time points. For each sub-block, a group of values is defined by varying the concentrations. In the database each measurement value is stored together with 3 parameters: time point, replicate and concentration.

The configuration files for IOM templates are developed on case by case basis, as the templates are confidential.

eNanoMapper

604134


21 November 2016





### 5. NANOREG DATA TRANSFER

Most of the data generated by the NANoREG project is entered via a web entry tool, into a MySQL database, both developed by the Dutch Organization for Applied Scientific Research (TNO). The TNO database design is based on templates developed by the European Joint Research Center (JRC) for assays performed in NANoREG. The rest of the data is entered into Excel files, following the NANoREG templates, described in the previous sections. The Excel files are available at the NANoREG installation of the CIRCABC system. Upon an agreement between NANOREG and eNanoMapper, the NANOREG data is transferred to the eNanoMapper database. WP3 received several versions of the TNO experimental database as MySQL dump (July, September and October 2016).



eNanoMapper

604134

21 November 2016

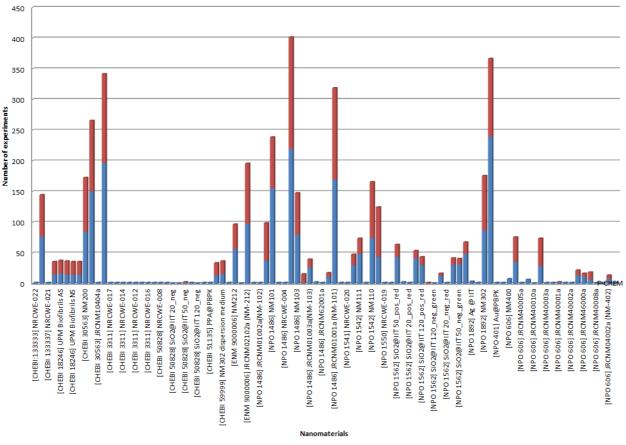




The conversion from the TNO SQL dump and import into the eNanoMapper database is performed via custom SQL scripts. Technical matters have been discussed between Ideaconsult & TNO over email and teleconferences.

An instance of the eNanoMapper database and the search application were installed at <u>https://apps.ideaconsult.net/nanoreg1</u> and <u>https://sandbox.ideaconsult.net/search/nanoreg1</u> (Figure 15 and Figure 16 respectively). The credentials are distributed for testing purposes to partners from NANoREG, eNanoMapper and CEINT, Duke University, US.

Home	earch • Data collections • Data upload • For developers • Help •	
NAN SREG NANORED	search page (demo) Search	
Data sources (81)	Hits list Selection	
<ul> <li>Nanomaterial type (86)</li> </ul>	No filters selected!	
BaSO4 CHEBL_3311 CHEBL_33418 CHEBL_33418 CHEBL_36973 cerium oxide nanoclay silica titanium oxide metal oxide	≤ 1 2 3 4 5 ≥ displaying 1 to 20 of 86 Ag @ IIT (Ag 20 nm) silver nanoparticle P-CHEM.Particle size distribution (Granulometry) [SUPPLIER] [0] more	đ
zinc oxide 🖌 iron (III) oxide 🖣	Material Composition Study External.database	Add to Selection
fluorescent core silver carbon nanotube SAS cellulose	JRCNM01001a (NM-101) (TiO2 6 nm) titanium oxide nanopartic P-CHEM.Dustiness (DUSTINESS) (2016) more	le a
	Material Composition Study External database	Add to Selection
<ul> <li>P-CHEM (81)</li> <li>Medium (0)</li> </ul>	JRCNM01005a (NM-105) (TiO2 23.4 nm) titanium oxide nanopa P-CHEM.Particle size distribution (Granulometry) [SUPPLIER] [0] more	article a
Dispersion protocol (2)	Material Composition Study External database	Add to Selection
<ul> <li>Results</li> <li>References (81)</li> <li>Protocols (81)</li> </ul>	JRCNM01100a (NM-110) (ZnO 147 nm) zinc oxide nanoparticle     P-CHEM.Particle size distribution (Granulometry) [DLS] [2015]     more	đ
Instruments (2)	Material Composition Study External.database	Add to Selection
	JRCNM01101a (NM-111) (ZnO 141 nm) zinc oxide nanoparticle P-CHEM.Particle size distribution (Granulometry) [DLS] [2015] more	e
	Material Composition Study External.database	Add to Selection
	JRCNM02000a (NM-200) (silica 18.3 nm) SAS P-CHEM.Particle size distribution (Granulometry) [DLS] [2015]	c
	Material Composition Study External.database	Add to Selection
	JRCNM02101a (NM-211) (CeO2 pending) cerium oxide nanopar P-CHEM.Particle size distribution (Granulometry) (SUPPLIER) [0]	ticle e


The search application relies on search services and user interface previously reported in D3.2 and D5.5. During the reporting period the search application was considerably updated according to user feedback and included in the list of applications reported in D5.7. A user guide is available at eNanoMapper tutorial repository⁷. The NANoREG specific search application is set up for testing purposes during the data transfer, to allow the fine tuning of the user interface. Apart from the specific search interface, the NANoREG data will be integrated in the main search application at <a href="http://search.data.enanomapper.net">http://search.data.enanomapper.net</a>.

```
eNanoMapper 604134 21 November DELIVERABLE Page 29 of 38
2016 REPORT D3.4
```

⁷ <u>https://github.com/enanomapper/tutorials/tree/master/Entering and analysing nano safety data</u>







#### NANoREG data availability

Figure 17 NANoREG data availability

Besides the SQL dump, a large amount of NAnoREG data is provided as Excel files, provisionally following the NAnoREG templates. Statistics of the files content is provided in ANNEX 1. NANOREG EXCEL FILES OVERVIEW. Cleaning, configuring and importing into the database are ongoing.





### **6. CONCLUSION**

The major developments reported in this deliverable are as follows:

- A *Material Schema extension* for the new ISA-JSON specification, which is the counterpart of the "material file" in the ISA-Tab-Nano specification;
- Cleaning and creation of configurations of the publicly available NANoREG templates, enabling direct import into the database;
- Development and open access to tools for exporting the internal data structures of the eNanoMapper database into ISA-JSON files;
- Development and open access to tools for converting between multiple input formats (including Excel templates) into ISA-JSON and semantic formats;
- Ontology annotation is ongoing, with close collaboration with eNanoMapper WP2;
- Creation of a documentation site, describing the developments above;
- The documentation site may serve as an entry point for templates download and related information. It is accessible via the eNanoMapper <u>tutorials repository</u> at Github and via menu "Data templates" of the search application at <a href="https://search.data.enanomapper.net">https://search.data.enanomapper.net</a>

Being able to read the Excel spreadsheets and write the internal data model into ISA-JSON files accomplishes the goal of automatically generating the ISA files, and enables exporting query results from the database in any desired format. The sets of Excel templates are based on existing NanoSafety Cluster templates that are used or considered for adoption by several NSC projects, such as caLIBRAte and NanoReg2, which are currently implementing the eNanoMapper database data model for collection of data. The templates are coupled with JSON configuration files, enabling import into the database through a simple web form or programmatically via Application Programming Interface. The use of the tools and templates described in this deliverable is also foreseen within the projects enabling harmonized collection of data, which will eventually be compatible across projects.

eNanoMapper

604134

21 NovemberDELIVERABLE2016REPORT D3.4





### **7. BIBLIOGRAPHY**

- S.-A. Sansone, P. Rocca-Serra, D. Field, E. Maguire, C. Taylor, O. Hofmann, H. Fang, S. Neumann, W. Tong, L. Amaral-Zettler, K. Begley, T. Booth, L. Bougueleret, G. Burns, B. Chapman, T. Clark, L.-A. Coleman, J. Copeland, S. Das, A. de Daruvar, P. de Matos, I. Dix, S. Edmunds, C. T. Evelo, M. J. Forster, P. Gaudet, J. Gilbert, C. Goble, J. L. Griffin, D. Jacob, J. Kleinjans, L. Harland, K. Haug, H. Hermjakob, S. J. H. Sui, A. Laederach, S. Liang, S. Marshall, A. McGrath, E. Merrill, D. Reilly, M. Roux, C. E. Shamu, C. A. Shang, C. Steinbeck, A. Trefethen, B. Williams-Jones, K. Wolstencroft, I. Xenarios, and W. Hide, "Toward interoperable bioscience data," *Nat. Genet.*, vol. 44, no. 2, pp. 121–126, Jan. 2012.
- [2] D. G. Thomas, S. Gaheen, S. L. Harper, M. Fritts, F. Klaessig, E. Hahn-Dantona, D. Paik, S. Pan, G. A. Stafford, E. T. Freund, J. D. Klemm, and N. A. Baker, "ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format," *BMC Biotechnol.*, vol. 13, no. 1, p. 2, 2013.
- [3] R. L. Marchese Robinson, M. T. D. Cronin, A.-N. Richarz, and R. Rallo, "An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology," *Beilstein J. Nanotechnol.*, vol. 6, pp. 1978–1999, Oct. 2015.
- P. Kohonen, E. Benfenati, D. Bower, R. Ceder, M. Crump, K. Cross, R. C. Grafström, L. Healy, C. Helma, N. Jeliazkova, V. Jeliazkov, S. Maggioni, S. Miller, G. Myatt, M. Rautenberg, G. Stacey, E. Willighagen, J. Wiseman, and B. Hardy, "The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing," *Mol. Inform.*, vol. 32, no. 1, pp. 47–63, Jan. 2013.
- [5] N. Jeliazkova, C. Chomenidis, P. Doganis, B. Fadeel, R. Grafström, B. Hardy, J. Hastings, M. Hegi, V. Jeliazkov, N. Kochev, P. Kohonen, C. R. Munteanu, H. Sarimveis, B. Smeets, P. Sopasakis, G. Tsiliki, D. Vorgrimmler, and E. Willighagen, "The eNanoMapper database for nanomaterial safety information," *Beilstein J. Nanotechnol.*, vol. 6, pp. 1609–1634, Jul. 2015.
- [6] S.-A. Sansone, P. Rocca-Serra, A. Gonzalez-Beltran, and D. Johnson, "ISA Model and Serialization Specifications 1.0." Zenodo, 2016.

eNanoMapper	604134	21 November	DELIVERABLE	Page 32 of 38
		2016	REPORT D3.4	





### ANNEX 1. NANOREG EXCEL FILES OVERVIEW

The NANoREG templates for phys-chem characterisation consist of 10 files, describing 20 assays.

WP2 - phys chem				Number of fields
crystalline phase_NR	20160828.xlsx			149
WAXD				30
XRD				119
crystallite size_NR_2	0160828.xlsx			349
SAXS				201
WAXD				34
XRD				114
NRCWE XRF_data_20	016-08-31.xlsx			513
WDXRF				513
NRCWE-biomolecule	interaction_2016	5-08-31.xlsx		1888
BSA				115
IL-6				591
IL-8				591
LDH				591
eNanoMapper	604134	21 November 2016	DELIVERABLE REPORT D3.4	Page 33 of 38





Results_TEM_PTA_D2.10 Protocol(s) for size-distribution analysis of primary MNM object.xlsx	657
Coda Cerva_PTA	169
Coda Cerva_TEM	488
SEM_NMs size.xlsx	394
assay_SEM	394
WP2_31_BiomoleculeInteraction_20160831.xlsx	154
BSA	109
IL-6	15
IL-8	15
LDH	15
WP2_31_Coating_TGA_20160801.xlsx	190
plain template	190
WP2_31_ElementalAnalysis_CHN_150716.xlsx	260
elemental composition_ CHN	260
WP2_31_FunctionalGroupsCoating_ATR-FTIR_20160718.xlsx	158
coating_ATR-FTIR	158
Total	4712

The NANoREG templates for in vitro experiments consist of 7 files, describing 11 assays.

WP5 - in vitro			Number of fields
NPL_WP5_46_Solut	oility_Colorimetry_	_v9.xlsx	536
eNanoMapper	604134	21 November 2016	DELIVERABLE REPORT D3.4





assay_colorimetry	215
batch dispersion	321
WP5_Chromosomal damage in vitro_49FIOH.xlsx	384
Chromosomal damage in vitro	384
WP5_Cytotoxicity in vitro_49FIOH.xlsx	696
Cytotoxicity in vitro_BEAS 2B	318
Cytotoxicity in vitro_THP-1	378
WP5_DNA damage in vitro.xlsx	498
DNA damage in vitro	498
WP5_DNA damage in vitro_49FIOH.xlsx	498
DNA damage in vitro	498
WP5_mRNAexpression in vitro_49FIOH.xlsx	756
mRNA expression in vitro_IL-1B	378
mRNA expression in vitro_TNF-a	378
WP5_protein_secretion in vitro_49FIOH.xlsx	872
WP5_protein_secretion in vitro_49FIOH.xlsx Protein secretion in vitro_IL1b	<b>872</b> 436

The NANoREG templates for in vitro experiments are listed in the following table.

WP4 - in vivo			Number of	fields
Lung_DistributionCRM_based_on_T1.5_template_4.4.xlsx			74	
eNanoMapper	604134	21 November 2016	DELIVERABLE REPORT D3.4	Page 35 of 38





Tabelle1			74
Lung_DistributionIB	M_based_on_1	1.5_template_4.4.xlsx	55
Tabelle1			55
WP4_BAL cell counts_4	9FIOH.xlsx		642
BAL cell counts			642
WP4_DNA damage in v	ivo_49FIOH.xls	x	646
DNA damage in vivo -	BAL cells		323
DNA damage in vivo -	lung cells		323
WP4_ecotox. D.magna	_TEK_JRCNM02	2000a.xlsx	86
MN assay in vivo - D.n	nagna		86
WP4_ecotox. D.magna_	_TEK_JRCNM02	2102a_1.xlsx	86
MN assay in vivo - D.n	nagna		86
WP4_ecotox. D.magna	_TEK_JRCNM02	2102a_2.xlsx	80
MN assay in vivo - D.n	nagna		80
WP4_ecotox. D.magna_	_TEK_JRCNM03	8000a_1.xlsx	79
MN assay in vivo - D.n	nagna		79
WP4_ecotox. D.magna	_TEK_JRCNM03	8000a_2.xlsx	87
MN assay in vivo - D.magna			87
WP4_ecotox. D.magna_TEK_JRCNM04001a.xlsx			86
MN assay in vivo - D.magna			86
WP4_ecotox. P.subcap_TEK_JRCNM01003a_1.xlsx 86			86
MN assay in vivo - mio	croalgae		86
eNanoMapper	604134	21 November 2016	DELIVERABLE REPORT D3.4





WP4_ecotox. P.subcap	_TEK_JRCNM01	.003a_2.xlsx	87
MN assay in vivo - mio	croalgae		87
WP4_ecotox. P.subcap	_TEK_JRCNM01	.003a_3.xlsx	87
MN assay in vivo - mio	croalgae		87
WP4_ecotox. P.subcap	_TEK_JRCNM02	2102a_1.xlsx	86
MN assay in vivo - mio	croalgae		86
WP4_ecotox. P.subcap	_TEK_JRCNM02	2102a_2.xlsx	87
MN assay in vivo - mio	croalgae		87
WP4_ecotox. P.subcap	_TEK_JRCNM02	2102a_3.xlsx	86
MN assay in vivo - mio	croalgae		86
WP4_ecotox. P.subcap	_TEK_JRCNM03	8000a_1.xlsx	86
MN assay in vivo - mio	croalgae		86
WP4_ecotox. P.subcap	_TEK_JRCNM03	8000a_2.xlsx	87
MN assay in vivo - mio	croalgae		87
WP4_long term effect S	SYSTEMIC GENO	Dtoxicity_ENEA.xlsx	433
COMET - sistemic gen	otox		129
lung genotoxicity			40
Micronuclei - sistemic	genotox		132
PIG-A sistemic genotox			132
WP4_mRNAexpression	in vivo_49FIOF	ł.xlsx	1020
mRNA expression in v	ivo_IFN-g		120
mRNA expression in v	ivo_IL-10		120
eNanoMapper	604134	21 November 2016	DELIVERABLE REPORT D3.4





mRNA expression in vivo_IL-13	220
mRNA expression in vivo_IL-1b	220
mRNA expression in vivo_IL-6	120
mRNA expression in vivo_TNF-a	220
WP4_systemic effects bone marrow_49FIOH.xlsx	322
MN assay in vivo - bone marrow	322
WP47_lung_histology_genotoxicity.xlsx	341
lung genotoxicity	69
organ histology	272
Total	4729

eNanoMapper

604134

21 November 2016