
DELIVERABLE REPORT D4.3 

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Deliverable Dx-y 

GRANT AGREEMENT: 604134 

ACRONYM: eNanoMapper 

NAME: 
eNanoMapper - A Database and Ontology 
Framework for Nanomaterials Design and Safety 
Assessment 

PROJECT COORDINATOR: Douglas Connect GmbH 

START DATE OF PROJECT; DURATION: 1 February 2014; 36 months 

PARTNER(s) RESPONSIBLE  
FOR THIS DELIVERABLE: 

NTUA 

DATE: 31.7.2015 

VERSION: [V.4.0.] 

DELIVERABLE REPORT D4.3 

nQSAR Modelling infrastructure 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 2 of 50 

 

 
 
  

Document Type Deliverable Report 

WP/Task WP4 /Task3 

Document ID eNanoMapper D4.3 

Status Final 

 

Partner Organisations 

 Douglas Connect, GmbH (DC) 

 National Technical University of Athens (NTUA) 

 In Silico Toxicology (IST) 

 Ideaconsult (IDEA) 

 Karolinska Institutet (KI) 

 VTT Technical Research Centre of Finland (VTT) 

 European Bioinformatics Institute (EMBL-EBI) 

 Maastricht University (UM) 

 Misvik Biology Oy (MB) 

Authors 

Charalambos Chomenidis 
Philip Doganis 
George Drakakis 
Georgia Tsiliki 
Haralambos Sarimveis 
Final review and edit by Barry Hardy 

Purpose of the Document 

To report on the progress of updating and extending 
statistical and machine learning methods and 
OpenTox services, for the development of nQSAR 
models. 

Document History  

1.Table of Contents, 10/03/2015  
2.First draft, 02/05/2015 
3. Second draft, 30/06/2015 
4. Third draft, 16/07/2015 
 

Call identifier FP7-NMP-2013-SMALL-7 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 3 of 50 

 

 
 

TABLE OF CONTENTS 
1. EXECUTIVE SUMMARY........................................................................................................7 

2. INTRODUCTION ..................................................................................................................8 

3. THE JAQPOT QUATTRO WEB APPLICATION .........................................................................9 

3.1 PRODUCING DATASETS SUITABLE FOR MODELLING ............................................................................................................................ 9 
3.2 API FOR DYNAMIC ALGORITHM INTEGRATION AND NANO-QSAR MODEL DEVELOPMENT .............................................. 16 
3.3 API FOR NANO-QSAR MODEL DEVELOPMENT ......................................................................................................................... 19 
3.4 INTEGRATION WITH THIRD PARTY SERVICES – ALGORITHM IMPLEMENTATIONS ............................................................... 20 

3.4.1 INTEGRATION OF R LANGUAGE ALGORITHMS INTO THE ENANOMAPPER COMPUTATIONAL INFRASTRUCTURE USING 

OPENCPU ................................................................................................................................................................................................... 21 
3.4.1.1 Service Technical Details ................................................................................................................................................................. 21 
3.4.1.2 Algorithms available from CRAN Package Repository ...................................................................................................... 21 
3.4.1.3 R Algorithms Implemented as eNanoMapper Web Services ......................................................................................... 21 

3.4.2 INTEGRATION OF PYTHON INTO THE ENANOMAPPER COMPUTATIONAL INFRASTRUCTURE - DEVELOPMENT OF A 

MODELLING WEB SERVICE IN THE PYTHON LANGUAGE ....................................................................................................................... 23 
3.4.2.1 Algorithms Available from SciKit Learn ................................................................................................................................... 24 
3.4.2.2 SERVICE TECHNICAL DETAILS .................................................................................................................................................... 24 
3.4.2.3 ALGORITHMS IMPLEMENTED IN THE PYTHON WEB SERVICE.................................................................................. 26 

3.4.3 INTEGRATION OF WEKA INTO THE ENANOMAPPER COMPUTATIONAL INFRASTRUCTURE - DEVELOPMENT OF A 

MODELLING WEB SERVICE USING THE WEKA DATA MINING SOFTWARE ....................................................................................... 27 
3.4.3.1 SERVICE TECHNICAL DETAILS .................................................................................................................................................... 28 
3.4.3.2 ALGORITHMS IMPLEMENTED IN THE weka WEB SERVICE ......................................................................................... 29 

4. DEMONSTRATION OF THE JAQPOT MODELING WORKLFOW  ............................................ 31 

4.1 FROM EXPERIMENTAL DATA BUNDLE TO DATASET .................................................................................................................. 31 
4.2 USING THE DATASET FOR MODELLING ........................................................................................................................................ 34 
4.3 USING THE MODEL FOR PREDICTIONS ......................................................................................................................................... 38 

5. RREGRS PACKAGE ............................................................................................................ 42 

6. CONCLUSION .................................................................................................................... 47 

7. BIBLIOGRAPHY ................................................................................................................. 48 

 
 
 
 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 4 of 50 

 

 
 

TABLE OF FIGURES 
Figure 1 Screenshot of the JQ modelling web services API .......................................................................... 9 
Figure 2 Conjoiner API: modelling-oriented information can be extracted from bundles of experimental 
data. ............................................................................................................................................................ 10 
Figure 3 Input spreadsheet for Crystallographic files and TEM images of NiO and Y2O3 ........................... 11 
Figure 4 The uploaded dataset with links for images and PDBs. ................................................................ 13 
Figure 5 Create Bundle operation ............................................................................................................... 13 
Figure 6 Dataset creation from bundle with the command to calculate Image and MOPAC descriptors. 14 
Figure 7 JPDI-compliant web services can be seamlessly incorporated into the eNanoMapper framework.
 .................................................................................................................................................................... 17 
Figure 8 Creating a model using an algorithm ............................................................................................ 20 
Figure 9 Details on content of a bundle ...................................................................................................... 32 
Figure 10 Swagger form for creation of dataset from bundle .................................................................... 32 
Figure 11 Query of task id ........................................................................................................................... 33 
Figure 12 Dataset produced from bundle ................................................................................................... 34 
Figure 13 Querying the model .................................................................................................................... 38 
Figure 14 Applying the model to the test dataset ...................................................................................... 39 
Figure 15 Output dataset with prediction feature ..................................................................................... 41 
Figure 16 JSON representation of  predicted feature ................................................................................. 41 
Figure 17 JSON representation of  DoA feature ......................................................................................... 41 
Figure 18 RRegrs methodology flowchart. The main steps followed by the RRegrs function are indicated 
as well as the input parameters needed and the format of the output produced .................................... 43 
 

 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 5 of 50 

 

 

GLOSSARY 
Abbreviation / acronym Description 

1D 1-dimensional 

3D 3-Dimensional 

ANOVA Analysis of Variance 

API Application Programming Interface 

ARFF Attribute-Relation File Format 

BP Biological Processes 

CC Cellular Components 

CSV Comma-separated values 

CV Cross-Validation 

DFT Density Functional Theory 

DoA Domain of Applicability 

EJB Enterprise JavaBeans 

ENET Elastic Net regression 

ENM(s) Engineered Nanomaterial(s) 

FFNN Feed Forward Neural Network 

GLM Generalized Linear Model with Stepwise Feature Selection 

GNU GPL GNU General Public License 

GO Gene Ontology 

GPW Gaussian and plane waves  

GSEA Gene Set Enrichment Analysis 

GUI Graphical user interface 

HC Hierarchical Clustering 

HF Hartree-Fock 

HOMO Highest Occupied Molecular Orbital 

HTTP Hypertext Transfer Protocol 

ID3 Iterative Dichotomiser 3 

in K Nearest Neighbour 

JPDI Jaqpot Protocol of Data Interchange 

JQ  Jaqpot Quattro 

JSON JavaScript Object Notation 

KEGG Kyoto Encyclopaedia of Genes and Genomes 

KS-DFT Kohn-Sham density functional theory 

LASSO Least Absolute Shrinkage and Selection Operator  

LC-MS/MS Liquid chromatography–Mass Spectrometry/ Mass 
Spectrometry 

LM Linear Model 

LOO Leave-One-Out 

LOOCV Leave one out cross validation 

LUMO Lowest Unoccupied Molecular Orbital 

MeOx Metal oxides 

MF Molecular Functions 

MLR Multiple Linear Regression 

MS Mass Spectrometry 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 6 of 50 

 

MSigDB Molecular Signature Databases 

NanoQSAR , nQSAR Nano Quantitative Structure Activity Relationship 

NPs Nanoparticles 

OLS Ordinary Least Squares 

OpenTox http://www.opentox.org/   

PLS Partial Least Squares 

PMML Predictive Model Markup Language 

PubMed http://www.ncbi.nlm.nih.gov/pubmed    

QM Quantum Mechanics 

QSAR Quantitative Structure Activity Relationship 

RBF Radial Basis Function 

REST Representational State Transfer 

RF Random Forest 

RFE Recursive Feature Elimination 

RMSE Root Mean Square Error 

RSS Rich Site Summary 

SVM Support Vector Machines 

SVR Support Vector Regression 

TEM Transmission Electron Microscopy 

UniProt Universal Protein Database 

URI Uniform Resource Identifier 

VIP Variable Importance in Projection 

WS Web Services 

XML Extensible Markup Language 

 
 

http://www.opentox.org/
http://www.ncbi.nlm.nih.gov/pubmed


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 7 of 50 

 

 

1. EXECUTIVE SUMMARY 
 
This deliverable describes the nQSAR Modelling infrastructure developed within Work Package 4 to 
support eNanoMapper modelling activities. First, we describe the novelties in the Application 
Programming Interface (API) that allow seamless integration of any web service or algorithm, 
independently of architecture or language of algorithm, with the sole condition that it complies with the 
Jaqpot API. Second, a complete walkthrough of the Jaqpot modelling workflow is provided, from 
experimental data bundle to dataset, models and predictions, followed by a presentation of the 
modelling algorithms that have been made available from R, Python and WEKA. Finally, we describe the 
RRegrs package for computer-aided model selection that gives access to standard and individually 
implemented methodologies utilized within the eNanoMapper computational infrastructure. 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 8 of 50 

 

 

2. INTRODUCTION 
 
Deliverable 4.3 describes how the OpenTox modelling resources have been extended to reflect the 
required adequate description of ENMs and integrate statistical and machine learning (ML) algorithms, 
able to exploit and integrate diverse data and metadata captured in the database warehouse of the 
project including images, high throughput screening and omics data. Such an extension was deemed 
necessary, as the OpenTox algorithm and modelling API originated as chemical structure-centric, and 
requires clean datasets in a specific form, while the eNanoMapper prototype database is explicitly 
designed to handle all peculiarities of experimental data, including replicates, range and error values.  
 
The approach taken by eNanoMapper, resulted in the Jaqpot Quattro (JQ) web application, the API 
documentation of which can be found at http://app.jaqpot.org:8080/jaqpot/swagger. JQ is an extension 
of the Jaqpot web application, which was originally developed during the OpenTox project (Hardy et. al., 
2010) and features improved efficiency and additional functionality. JQ is an open-source project, 
written in Java and licensed with the GNU GPL v3 license. It provides asynchronous execution of tasks 
submitted by users, as well as authentication and authorisation. JQ is part of the eNanoMapper 
framework and communicates with other web services in the framework via the common REST API 
described. The source code is publicly available from https://github.com/KinkyDesign/JaqpotQuattro.  
 
Section 3 of this report describes the architecture and functionalities of the JQ web application and 
focuses on the following main features: Producing data sets suitable for modelling, data preprocessing 
procedures, APIs for dynamic algorithm integration, integration with third-party services and algorithm 
implementations.  A full demonstration of the JQ modelling workflow is given section 4, with the help of 
the Swagger interface for visualization of the functionality of the web services. Section 5 describes the 
RRegrs (R Regressions) R package (Tsiliki et al., 2015), that has been developed in the context of the 
eNanoMapper project. RRegrs is a standardized framework that automates the development of a 
reliable and well-validated QSAR model or set of models.  
 
 

http://app.jaqpot.org:8080/jaqpot/swagger
https://github.com/KinkyDesign/JaqpotQuattro


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 9 of 50 

 

3. THE JAQPOT QUATTRO WEB 
APPLICATION 
 
JQ is a web application that currently supports data preprocessing, as well as statistical, data mining and 
machine learning algorithms and methods for defining the Domain of Applicability of a predictive nQSAR 
model. JQ has been developed following the extended OpenTox APIs that have been presented in detail 
in Deliverable 4.1. As already mentioned in the introduction, the JQ web services API has been 
documented using the Swagger framework. A list of REST endpoints is presented to the end-user; these 
correspond to the main entities/resources of eNanoMapper: datasets, models, algorithms, BibTeX 
entities, asynchronous tasks and more. The user can click on any of these endpoints to get a list of the 
available operations related to each entity.  A screenshot of the JQ API is shown in Fig.1. The main 
features of the JQ web application are presented in the following subsections. 
 

 
Figure 1 Screenshot of the JQ modelling web services API 

 
 

3.1 PRODUCING DATASETS SUITABLE FOR MODELLING 
JQ algorithm services require input data in a standardized format in order to generate a predictive 
model. Therefore, raw experimental data cannot be used directly for modelling purposes. The 
experimental data are, more often than not, heterogeneous by nature and properly structuring these is 
not a trivial task. To this end, a web service acting as a link between experimental data and data for 
modelling was introduced, which will be hereafter referred to as the Conjoiner service. This service 
performs the task of transforming the experimental data into a modelling-friendly format, and 
producing standardized datasets as specified in the OpenTox API. One can initiate a conjoiner service 
operation by specifying a bundle URI. A bundle is an eNanoMapper resource that acts as an assortment 
of experimental effects, images and molecular structures, for nanomaterials, and the Conjoiner service's 
job is to combine all that disparate data into a dataset suitable to be fed to an algorithm service. 
Regarding experimental data, multiple individual measurements, interval-valued measurements (lower 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 10 of 50 

 

and upper values), or values accompanied by a standard measurement error, may be included for the 
same endpoint in a bundle. These need to be aggregated into a single value, which is currently carried 
out by taking the average value of all experimental measurements having excluded outliers identified by 
a Dixon's q-test (Rorabacher, 1991), but different aggregation procedures can be implemented based on 
more elaborate outlier detection criteria and rejection/aggregation schemata. When bundles contain 
links to raw data of nanomaterials such as images, crystallographic data and proteomics data, the 
descriptor calculation web services described in Deliverable 4.2 are activated to produce the calculated 
descriptors. The overall procedure is illustrated in Figure 2. Data as heterogeneous as chemical 
structures, raw experimental measurements, spectra and microscopy images can be combined by the 
conjoiner service to produce a dataset for modelling purposes. 
 

 
Figure 2 Conjoiner API: modelling-oriented information can be extracted from bundles of experimental 

data. 

Here follows an example, where a dataset used for modelling is created from a spreadsheet that does 
not contain any numerical value, but only links to crystallographic data files and image files for two 
metal oxide nanoparticles: NiO and Y2O3. The example spreadsheet file in .xlsx format is shown in Figure 
3. Cells C10:D11 contain links to private repositories where we store images and crystallographic (PDB) 
files, although the links could point to any internet location. The spreadsheet file is uploaded to the 
eNanoMapper database, by visiting the following address:  
https://apps.ideaconsult.net/enmtest/ui/uploadsubstance1 

 
 

https://apps.ideaconsult.net/enmtest/ui/uploadsubstance1


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 11 of 50 

 

 
Figure 3 Input spreadsheet for Crystallographic files and TEM images of NiO and Y2O3 

In order for the eNanoMapper system to be able to comprehend the file described above and alter the 
input provided by the user to the appropriate category, the user needs to upload a JSON file that 
contains the mapping for the .xlsx file, which is presented on the next page: 
 
 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 12 of 50 

 

The mapping provided in the JSON file provides the system with an association of the cells in the 
spreadsheet and the eNanoMapper database fields whose values should be input. The upload process 
leads to this dataset: 
https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-021e69c9-4fa3-3e1e-b2b7-
871ceab93347/dataset  
which is depicted in Figure 4, where the names of the imported metal oxides, the owner of the data 
(DOI of the publication), and the links for the images and crystallographic data are given. 

{   "TEMPLATE_INFO": { 
        "NAME": "CalculatedDescriptorsWorkFlow", 
        "VERSION": "original", 
        "TYPE": 1    }, 
    "DATA_ACCESS": { 
        "ITERATION": "ROW_SINGLE", 
        "SHEET_INDEX": 1, 
        "START_ROW": 10, 
"END_ROW": 11, 
        "START_HEADER_ROW": 1, 
        "END_HEADER_ROW": 9, 
        "ALLOW_EMPTY": true, 
        "RECOGNITION": "BY_INDEX"    }, 
    "SUBSTANCE_RECORD": { 
        "COMPANY_UUID": { 
            "COLUMN_INDEX": "A"        }, 
        "PUBLIC_NAME": { 
            "COLUMN_INDEX": "A"        }, 
        "OWNER_NAME": { 
            "ITERATION": "ABSOLUTE_LOCATION", 
            "COLUMN_INDEX": "C", 
            "ROW_INDEX": 7        }, 
        "SUBSTANCE_TYPE": { 
            "ITERATION": "JSON_VALUE", 
            "JSON_VALUE": "Nanoparticle"        }, 
        "REFERENCE_SUBSTANCE_UUID": { 
            "COLUMN_INDEX": "B"        }, 
        "COMPOSITION": [            { 
                "STRUCTURE_RELATION": "HAS_CORE", 
                "CONTENT": { 
                    "COLUMN_INDEX": "B"                }, 
                "FORMAT": { 
                    "ITERATION": "JSON_VALUE", 
                    "JSON_VALUE": "INC"                }, 
                "InChI": { 
                    "COLUMN_INDEX": "B"                }            }        ]    }, 
    "PROTOCOL_APPLICATIONS": [ 
        {      "CITATION_TITLE": { 
                "ITERATION": "ABSOLUTE_LOCATION", 
                "COLUMN_INDEX": "C", 
                "ROW_INDEX": 3            }, 
"CITATION_TITLE": { 
                "ITERATION": "JSON_VALUE", 
                "JSON_VALUE":   
"http://dx.doi.org/10.3109/17435390.2014.930195" }, 
            "CITATION_YEAR": { 
                "ITERATION": "JSON_VALUE", 
                "JSON_VALUE": "2014"            }, 
            "CITATION_OWNER": { 
                    "ITERATION": "JSON_VALUE", 
                    "JSON_VALUE": "eNanoMapper"            },             
            "PROTOCOL_CATEGORY_CODE": { 
                "ITERATION": "ABSOLUTE_LOCATION", 
                "COLUMN_INDEX": "C", 
                "ROW_INDEX": 1            }, 
            "PROTOCOL_GUIDELINE": { 
                "guideline1": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "C", 
                    "ROW_INDEX": 2                }            }, 
            "PARAMETERS": { 

                "type_of_method": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "C", 
                    "ROW_INDEX": 5                }, 
                "data_gathering_instruments": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "C", 
                    "ROW_INDEX": 6                }            }, 
            "EFFECTS": [ 
                {      "ENDPOINT": { 
                        "ITERATION": "JSON_VALUE", 
                        "JSON_VALUE": "IMAGE"                    }, 
                    "TEXT_VALUE": { 
                        "COLUMN_INDEX": "C"                    }, 
                    "CONDITIONS": { 
                        "Cell": { 
                            "ITERATION": "ABSOLUTE_LOCATION", 
                            "COLUMN_INDEX": "C", 
                            "ROW_INDEX": 9}     }      }            ]        }, 
        {      "CITATION_TITLE": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "D", 
                    "ROW_INDEX": 3            }, 
               "CITATION_YEAR": { 
                    "ITERATION": "JSON_VALUE", 
                    "JSON_VALUE": "2014"            }, 
            "CITATION_OWNER": { 
                    "ITERATION": "JSON_VALUE", 
                    "JSON_VALUE": "eNanoMapper" 
            },   
            "PROTOCOL_CATEGORY_CODE": { 
                "ITERATION": "ABSOLUTE_LOCATION", 
                "COLUMN_INDEX": "D", 
                "ROW_INDEX": 1            }, 
            "PROTOCOL_GUIDELINE": { 
                "guideline1": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "D", 
                    "ROW_INDEX": 2                }            }, 
            "PARAMETERS": { 
                "type_of_method": { 
                    "ITERATION": "ABSOLUTE_LOCATION", 
                    "COLUMN_INDEX": "D", 
                    "ROW_INDEX": 5                }            }, 
            "EFFECTS": [ 
                {       "ENDPOINT": { 
                        "ITERATION": "JSON_VALUE", 
                        "JSON_VALUE": "PDB_CRYSTAL_STRUCTURE" 
                    }, 
                    "TEXT_VALUE": { 
                        "COLUMN_INDEX": "D" 
                    }                }            ]        }    ]  
} 
 

https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-021e69c9-4fa3-3e1e-b2b7-871ceab93347/dataset
https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-021e69c9-4fa3-3e1e-b2b7-871ceab93347/dataset
http://dx.doi.org/10.3109/17435390.2014.930195


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 13 of 50 

 

 
Figure 4 The uploaded dataset with links for images and PDBs. 

Visiting the Create Bundle operation of the Swagger interface (via selection of the menu, or directly 
accessing http://app.jaqpot.org:8080/jaqpot/swagger/#!/enm/createBundle) and adding in the body 
the URI for the relevant substance owner (https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-
021e69c9-4fa3-3e1e-b2b7-871ceab93347), as shown in Figure 5, we get a resulting bundle URI, namely 
https://apps.ideaconsult.net/enmtest/bundle/81.  
 

 
Figure 5 Create Bundle operation 

 

https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-021e69c9-4fa3-3e1e-b2b7-871ceab93347
https://apps.ideaconsult.net/enmtest/substanceowner/XLSX-021e69c9-4fa3-3e1e-b2b7-871ceab93347
https://apps.ideaconsult.net/enmtest/bundle/81


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 14 of 50 

 

 
Figure 6 Dataset creation from bundle with the command to calculate Image and MOPAC descriptors. 

Subsequently, we visit the Create Dataset operation, in Swagger: 
http://app.jaqpot.org:8080/jaqpot/swagger/#!/enm/createDataset. After input of the body text shown 
in Figure 6, we request a dataset to be created using the bundle we provided as input and also for Image 
and MOPAC descriptors to be calculated and added to the dataset. The result of this action is this 
dataset: http://app.jaqpot.org:8080/jaqpot/services/dataset/3MOwEZvFhnQ6.  
We can observe in the following JSON representation of the aforementioned dataset that there are two 
groups of features in the "values" field: the first group is that of the image-derived descriptors, whose 
URIs begin with http://app.jaqpot.org:8080/jaqpot/services/feature/image+ and continue with the 
descriptor name. For instance, the URI that represents the particle area for the “average particle”, a 
virtual particle that contains the average values for all recognized particles is as follows: 
http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+area. The second group is 
that of the MOPAC derived descriptors, like the Electronic Energy, defined by the feature 
https://apps.ideaconsult.net/enmtest/feature/62. 
 
{ 

meta: 

{ 

comments:  

[ 

"Created by task TSKFzSxVqUStVCy" 

], 

descriptions:  

[ 

http://app.jaqpot.org:8080/jaqpot/swagger/#!/enm/createDataset
http://app.jaqpot.org:8080/jaqpot/services/dataset/3MOwEZvFhnQ6
http://app.jaqpot.org:8080/jaqpot/services/feature/image
http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+area
https://apps.ideaconsult.net/enmtest/feature/62


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 15 of 50 

 

"This dataset contains PDB files and Images " 

], 

titles:  

[ 

"Crystallography and Microscopy dataset" 

], 

creators:  

[ 

"filipposd" 

], 

hasSources:  

[ 

"https://apps.ideaconsult.net/enmtest/bundle/81" 

] 

}, 

dataEntry:  

[ 

{ 

compound:  

{ 

URI: "https://apps.ideaconsult.net/enmtest/substance/XLSX-b2a6a8e9-a7d4-349c-

9fcc-df05356a508d" 

}, 

values:  

{ 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+angle: 

149.23083, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+area: 8

803, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+area_fr

action: 43.979816, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+aspect_

ratio: 1.3006951, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+circula

rity: 0.34530884, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+feret: 

200.14246, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+feret_a

ngle: 136.01219, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+feret_x

: 0, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+feret_y

: 0, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+integra

ted_density: 827776, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+kurtosi

s: -0.017311413, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+major: 

120.74194, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+max_gre

y_value: 130, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+mean_gr

ey_value: 94.0334, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+min_fer

et: 139, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+min_gre

y_value: 6, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+minor: 

92.82878, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+perimet

er: 566, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+raw_int

egrated_density: 827776, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+roundne

ss: 0.7688197, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+skewnes

s: -0.6812224, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+solidit

y: 1, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+spheric

ity: 0.0006815858230148812, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+std_dev

: 24.328926, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+surface

Diameter: 52.94811785808232, 

https://apps.ideaconsult.net/enmtest/bundle/81
https://apps.ideaconsult.net/enmtest/substance/XLSX-b2a6a8e9-a7d4-349c-9fcc-df05356a508d
https://apps.ideaconsult.net/enmtest/substance/XLSX-b2a6a8e9-a7d4-349c-9fcc-df05356a508d


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 16 of 50 

 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+volume:

 0, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+volumeD

iameter: 0, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+volumeT

oSurface: 0, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+x_cente

r_of_mass: 67.20986, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+x_centr

oid: 66.68812, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+y_cente

r_of_mass: 49.1137, 

http://app.jaqpot.org:8080/jaqpot/services/feature/image+average+particle+y_centr

oid: 45.340168 

} 

}, 
… 

 

3.2 API FOR DYNAMIC ALGORITHM INTEGRATION AND NANO-
QSAR MODEL DEVELOPMENT 

 
The Jaqpot Protocol of Data Interchange, in short JPDI, is a new feature of the JQ web services that 
allows developers of machine learning algorithms to integrate their implementations in the framework. 
This integration requires little engagement with intricate software development and allows algorithm 
developers to outsource their implementations and make them available to the nanomaterial design 
community through the eNanoMapper framework. The communication between eNanoMapper services 
and third-party JPDI services is carried out by exchanging JSON documents that contain no more 
information than what a modelling service needs to train a predictive model, calculate descriptors, 
perform a prediction, evaluate the domain of applicability of a model or perform other tasks. This is 
illustrated in Figure 7. Once a developer (possibly third-party) has prepared a JPDI-compliant web 
service, he/she needs to register it with the eNanoMapper framework by specifying (i) the name of the 
algorithm, (ii) meta-data for the algorithm, such as a description, tags, copyright notice and any other 
meta-data supported by the Dublin core ontology (http://dublincore.org/) and/or the OpenTox ontology 
(Tcheremenskaia et. al. 2012), (iii) the URI of their implementation to be used as an endpoint for 
training, (iv) the corresponding URI for the prediction web service, (v) an ontological characterization of 
the algorithm according to the OpenTox Algorithms ontology (e.g., ot:Regression or ot:Classification, or 
ot:Clustering; http://www.opentox.org/dev/apis/api-1.1/Algorithms  ). The algorithm is then registered 
by POSTing a JSON containing all this information to /algorithm. Once registered, the algorithm acquires 
a URI, and is exposed as a web service, that can be consumed by JQ. 
 

http://dublincore.org/
http://www.opentox.org/dev/apis/api-1.1/Algorithms


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 17 of 50 

 

 
Figure 7 JPDI-compliant web services can be seamlessly incorporated into the eNanoMapper framework. 

 
A JPDI request for training is presented below. This request is issued by an algorithm web service of 
eNanoMapper to a JPDI-compliant web service.  
 

{ 
    "dataset": { 
        "dataEntry": [ 
            { 
                "compound": { 
                      "URI": "http://some.server.org/substance/1" 
                }, 
                "values": { 
                    "http://some.server.org/property/1": 0.268, 
                    "http://some.server.org/property/2": 0.667, 
                    ... 
                } 
            }, 
            { 
                "compound": { 
                    "URI": "http://some.server.org/substance/2" 
                }, 
                "values": { 
                    "http://some.server.org/property/1": 0.115, 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 18 of 50 

 

                    "http://some.server.org/property/2": 0.759, 
                    ... 
                } 
            }, 
            ... 
        ] 
    }, 
    "predictionFeature": "http://some.server.org/feature/1", 
    "parameters": { 
          "theta": 49, 
          "mvh": 1.0 
    } 
} 

 
Once the model is trained, the JPDI service will return it to the caller in JSON format in which the actual 
model is encoded. Below is an example JSON response file from the JPDI service: 
 

{ 
    "rawModel": "<BASE64>", 
    "pmmlModel": "<PMML-XML>", 
    "additionalInfo" : "<Extra information the algorithm service needs saved with the model>", 
    "independentFeatures": [ 
           "http://some.server.org/property/1", 
           "http://some.server.org/property/2" 
    ] 
} 

 
Notice that the JPDI web service may select only some of the features of the initial dataset, which are 
defined in the PMML. Then, the JPDI service requires that a dataset containing these features be posted 
back to it, i.e., a JPDI service in order to perform predictions requires (i) the model it has previously 
produced and (ii) a dataset containing values for the features it has selected.  
 
Upon training, the model returned to the caller is stored as-is by the called service and will be returned 
back to the JPDI-compliant service when the client requests a prediction. This way, as already 
mentioned, the JPDI service providers do not need to maintain a database, while at the same time the 
eNanoMapper services do not need to know how the third-party services perform computations.  
 
Likewise, when JQ needs to consume a JPDI web service to perform predictions, it POSTs to it a JSON 
with (i) the input dataset containing substances and (ii) the model that was previously created by the 
JPDI service. An example of JSON prediction request is shown below: 
 

{ 
 "dataset": { 
  "datasetURI": ["http://some.server.org/dataset/1"], 
  "dataEntry": [{ 
    "compound": { 
      "URI": "http://some.server.org/substance/1" 
                }, 
       "values": { 
         "http://some.server.org/property/1": 0.268, 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 19 of 50 

 

         "http://some.server.org/property/2": 0.667, 
                    ... 
                 } 
                }, { 
    "compound": { 
      "URI": "http://some.server.org/substance/2" 
                }, 
       "values": { 
         "http://some.server.org/property/1": 0.115, 
         "http://some.server.org/property/2": 0.759, 
                    ... 
                } 
            }, 
            ... 
        ], 
  "rawModel": ["<BASE64>"], 
  "additionalInfo": ["<other info the JPDI algorithm service needs>"] 
    } 
} 

 
 

3.3 API FOR NANO-QSAR MODEL DEVELOPMENT 
 
 
Figure 8Error! Reference source not found. shows the interface that allows model creation by actually 
assembling a POST command according to the following parameters:   

 dataset_uri: URI of the training dataset. 

 prediction_feature: URI of the end-point to be predicted. 

 parameters: Algorithm-specific tuning parameters are specified in this field.  

 scaling: Scaling or normalization can be applied to the training data.  

 domain of applicability: An algorithm for defining the domain of applicability can be selected.  

 transformations: JQ makes use of the Predictive Model Markup Language (PMML) file format 
that allows clients to define a data dictionary and a transformations dictionary, by providing the 
URI of a PMML document. The data dictionary selects a number of features out of the original 
dataset that will be provided as input to the modelling algorithm, while the transformation 
dictionary defines mathematical formulae to be applied on the selected features. Construction 
and use of PMML files has been described in detail in Section 3 of D4.1.  

 id: The id of the desired algorithm must be entered here. As previously noted, all algorithms, 
even those not hosted at JQ but complying with its API can be used. A list of all available 
algorithms can be retrieved at 
http://app.jaqpot.org:8080/jaqpot/swagger/#!/algorithm/getAlgorithms. 

 subjectid: Here users can supply their own token, in case the dataset is not available by the 
guest token, which is used by default. 

 
 

http://app.jaqpot.org:8080/jaqpot/swagger/#!/algorithm/getAlgorithms


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 20 of 50 

 

 
Figure 8 Creating a model using an algorithm 

 

3.4 INTEGRATION WITH THIRD PARTY SERVICES – ALGORITHM 
IMPLEMENTATIONS 

 
With the modification and extensions to the OpenTox API, all supported state-of-the-art statistical and 
machine learning methods can be applied to ENMs. The extension of the OpenTox modelling 
infrastructure now provides additional facilities for data analysis, as well as for building and validating 
new ENM predictive models, which may be applied to all new datasets incorporated into the 
eNanoMapper infrastructure. For this reason we have extensively studied the integration of the facilities 
provided by R, Python and WEKA which allow easy access to a wealth of additional algorithms and 
methods, as well as specially designed libraries for the analysis and interpretation of omics and 
biological data. The eNanoMapper computational infrastructure provides the means to simultaneously 
run numerous regression models and compare their performances, but also run individual algorithms to 
enable specially designed optimization for their parameter space.  
 
The JDPI protocol allows to dynamically and seamlessly incorporate any custom algorithmic 
implementation into eNanoMapper without any need for resource management (i.e., the algorithm 
providers do not need to maintain a database system). The protocol specifies the form of data exchange 
between eNanoMapper services and third party algorithm web service implementations. The 
eNanoMapper framework already provides wrappers for WEKA (Hall et.al, 2009) the R language (R 
Development Core Team, 2012) and the Python language. 
 
In addition, the leverage method for defining the Domain of Applicability (DoA) of NanoQSAR models 
has been implemented and offered as a service.  The DoA is created by applying a POST to an instance of 
the DoA web service. Then, a predictive model can be linked to the DoA model in such a way that 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 21 of 50 

 

predictions are accompanied by an indicator that informs the user whether the query compound is in or 
out of the DoA of the model.  
 

3.4.1 INTEGRATION OF R LANGUAGE ALGORITHMS INTO THE ENANOMAPPER 

COMPUTATIONAL INFRASTRUCTURE USING OPENCPU 
 
R is a programming language and software environment (http://www.r-project.org/) that has become 
the most popular choice for users for statistical computing, graphics and data analysis, as shown by 
relevant literature and user surveys (Smith, 2015 & Piatetsky, 2015) Its power is largely owed to its cost-
free structure and its community that drives constant development, update and scrutiny of R packages 
in a collaborative manner.  R is widely used in the Bioinformatics domain and provides many alternative 
platforms and architectures for users in that field. Open source Bioconductor provides Bioinformatics 
capabilities using R (http://www.bioconductor.org/), focusing on high-throughput genomic data and 
making available many bioinformatics packages (1024 in June 2015), such as ChemmineR. R can also be 
used through the open source data analytics, reporting and integration platform KNIME (KNIME, 2013). 
Bioconductor is also available as images that allow users to deploy their own instances easily: an AMI 
(Amazon Machine Image, http://www.bioconductor.org/help/bioconductor-cloud-ami/) and a series of 
Docker images (http://www.bioconductor.org/help/docker/). 
 

3.4.1.1 SERVICE TECHNICAL DETAILS 
 
Integration with R is made possible through the OpenCPU (https://www.opencpu.org/) system, which 
defines a HTTP API for embedded scientific computing based on R, although this approach could easily 
be generalized to other computational back-ends (Ooms, 2014). OpenCPU acts as a wrapper to R that is 
readily able to expose R functions as RESTful HTTP resources. The OpenCPU server takes advantage of 
multi-processing in the Apache2 web server to handle concurrency. This implementation uses forks of 
the R process to serve concurrent requests immediately with little performance overhead. By doing so it 
enables access to those functions on simple HTTP calls converting R from a standalone application to a 
web service.  
 

3.4.1.2 ALGORITHMS AVAILABLE FROM CRAN PACKAGE REPOSITORY 
 
Currently, the Comprehensive R Archive Network (CRAN) package repository is the most complete 
repository of algorithms for R, featuring 6784 available packages (accessed June 2015) that provide 
access to more than 300 regression algorithms that cover a wide array of approaches (for example, here 
are statistics on packages that involve some methods: 200+ Bayes, 52 Gaussian, 4 Ridge Regression, 8 
Support Vector Machines), more than 84 classification packages and more than 120 packages for 
clustering.   
 

3.4.1.3 R ALGORITHMS IMPLEMENTED AS ENANOMAPPER WEB SERVICES 
 
Tailor-made eNanoMapper R packages are now ready for Linear Regression, Lasso and Ridge Regression, 
and Elastic Net. Additionally, we have implemented clustering methodologies, i.e. hierarchical clustering 
and bi-clustering. All packages have the same structure: a function which creates the model, a predictive 
function to predict or produce new instances given any new data supplied, and two other auxiliary 
functions. In all cases we have maintained the flexibility provided by the original R packages used in 
terms of parameters and methodologies considered. In order to ensure that the R functions expect a 
‘parameters’ argument, whenever more than one option are available, where the user can specify 

http://www.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/help/bioconductor-cloud-ami/
http://www.bioconductor.org/help/docker/
https://www.opencpu.org/


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 22 of 50 

 

methodologies or parameters of the functions based on the guidance from ours or R’s help files. An 
example of such a help file can be found in 
http://147.102.82.122/ocpu/library/glmNETpkg/man/glmnet.funct/text.    
 
Special features of the packages are their ability to accept JSON input files and produce JSON output 
files using the jsonlite R package (http://cran.r-project.org/web/packages/jsonlite/index.html ), and also 
produce PMML using the pmml R package (http://cran.r-project.org/web/packages/pmml/index.html ). 
 

REGRESSION ALGORITHMS 
The PLMplusPMMLpkg R package applies a linear model to the data and allows for prediction, since the 
model is stored in a serialized form in the system. More specifically we have wrapped the lm() and 
predict.lm() R functions in order to be able to accept JSON input files and produce JSON output files. The 
four functions of the package are: 

 read.in.json: reads in data in JSON format for linear modelling 

 read.in.json.for.pred: reads in R raw linear models in JSON format for prediction 

 lm.funct: performs linear modelling 

 pred.funct: predicts linear models supplied 
The package is available at http://147.102.82.122/ocpu/library/PLMplusPMMLpkg/info and 
https://github.com/GTsiliki/PLMpkg, where more details can be found in the accompanied manual files, 
while the algorithm’s web service URI is at: http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-
lm. 
 
The glmNETpkg R package is built on top of the glmnet R package (http://cran.r-
project.org/web/packages/glmnet/index.html) which employs procedures for fitting the entire lasso and 
elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson 
regression, the Cox model, multiple-response Gaussian, and the grouped multinomial. The four 
functions of the package are: 

 read.in.json: reads in data in JSON format for glmnet package functions 

 read.in.json.for.pred: reads in R raw glmnet models in JSON format for prediction  

 glmnet.funct: performs cv.glmnet which based on the users parameters can run a lasso, ridge or 
elastic net model. In order to choose which type of regression, the user needs to specify the 
elastic net mixing parameter alpha, i.e. alpha=0 (ridge), alpha=0.5 (elastic net), alpha=1 (lasso). 
The function runs glmnet 10+1 times by default; the first to get the penalty parameter lambda 
sequence, and then the remainder to compute the fit with each of the folds omitted. The 
response (dependent) variable can be categorized based on the following statistical families of 
distributions: Gaussian, Binomial, Poisson, Multinomial, Cox, multinomial Gaussian.  

 pred.funct: predicts from a cross-validated glmnet model, using the stored glmnet R model, and 
the optimal value chosen for lambda. The user needs to specify values of the penalty parameter 
lambda at which predictions are required. The values accepted are either s="lambda.1se" stored 
on the CV object, or s="lambda.min" can be used. If s is numeric, it is taken as the values of 
lambda to be used. 

The package is available at http://147.102.82.122/ocpu/library/glmNETpkg/info and 
https://github.com/GTsiliki/glmNet , where more details can be found in the accompanied manual files, 
while the algorithm’s web service URI is at: http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-
glmnet.     
 

CLUSTERING ALGORITHMS 
We have implemented an R package called clusteringPkg to estimate the clustering memberships for 
columns and rows of a given matrix. Data can be clustered by either employing hierarchical clustering 
algorithm (Kaufman and Rousseau, 1990) using distance measures form the vegan R package 

http://147.102.82.122/ocpu/library/glmNETpkg/man/glmnet.funct/text
http://cran.r-project.org/web/packages/jsonlite/index.html
http://cran.r-project.org/web/packages/pmml/index.html
http://147.102.82.122/ocpu/library/PLMplusPMMLpkg/info
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-lm
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-lm
http://cran.r-project.org/web/packages/glmnet/index.html
http://cran.r-project.org/web/packages/glmnet/index.html
http://147.102.82.122/ocpu/library/glmNETpkg/info
https://github.com/GTsiliki/glmNet
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-glmnet
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-glmnet


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 23 of 50 

 

(http://cran.r-project.org/web/packages/vegan/index.html) or bi-clustering (Cheng and Church, 2000; 
Lazzeroni and Owen, 2000) from the blockcluster R package (http://cran.r-
project.org/web/packages/blockcluster/index.html).  
 
The package is available at http://147.102.82.122/ocpu/library/clusteringPkg/info and 
https://github.com/GTsiliki/clustPkg, where more details can be found in the accompanied manual files, 
while the algorithm’s web service URI is at: http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-
clustering.   
 
The three functions of the package are: 

 generate.biclust.model: performs co-clustering (simultaneous clustering of rows and columns) 
for Binary, Contingency and Continuous data-sets using latent block models. It can also be used 
to perform semi-supervised co-clustering. The functions used are cocluster and cocluststrategy 
from the blockcluster R package. The user needs to specify the row and column names of the 
data or declare them as unknown, the data type (binary, contingency, continuous, categorical) 
and the number of clusters for the x and y axis respectively. The output is the clustered data 
matrix and memberships of columns and rows; a graph of the clustered data is also produced 
for a better comprehension of the results.  

 generate.hierar.model: performs hierarchical clustering using the hclust function and vegdist 
from the vegan R package. The user needs to specify the number of clusters or the height of the 
dendrogram. For the distance function the options provided are: "manhattan", "euclidean", 
"canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", 
"mountford", "raup", "binomial", "chao", "cao" or "mahalanobis"., and for the agglomeration 
clustering methodologies the options are: "ward.D", "ward.D2", "single", "complete", "average", 
"mcquitty", "median" or "centroid". The output is the clustered data matrix and memberships of 
columns or rows; a graph of the clustered data is also produced for a better comprehension of 
the results.  

 pred.clusters: returns cluster memberships as estimated by generate.hierar.model or 
generate.biclust.model functions. 

 
 

3.4.2 INTEGRATION OF PYTHON INTO THE ENANOMAPPER COMPUTATIONAL 

INFRASTRUCTURE - DEVELOPMENT OF A MODELLING WEB SERVICE IN THE PYTHON 

LANGUAGE 
 
Python (https://www.python.org/) has recently become the one of the most widely used programming 
languages, primarily due to its straightforward syntax which allows large-scale implementations in less 
lines of code than most languages, as well as rapid and effective system integration, boasting numerous 
and increasing success stories (https://www.python.org/about/success/). Its usage in scientific 
computing has augmented since the introduction of the numpy (http://www.numpy.org/) package for 
numerical computation and the scipy (http://www.scipy.org/) library, which allows the application of 
algorithms and toolboxes applicable to a wide array of scientific disciplines such as mathematics, 
engineering, as well as computational biology and chemistry. Many cheminformatics toolkits are built in 
python, provide a python API or allow python calls into other implementations, which include RDKit 
(http://www.rdkit.org/), OpenBabel (http://openbabel.org/) and Indigo 
(http://lifescience.opensource.epam.com/indigo/). A popular python software for using OpenBabel 
libraries is PyBel (O’Boyle et.al., 2008), allowing access to the attributes of molecules in a wide variety of 
formats and the calculation of physicochemical descriptors and fingerprints such as Molprint 2D 
(http://www.molprint.com/) (Bender et. al., 2004). Apart from descriptor/fingerprint calculations, 

http://cran.r-project.org/web/packages/blockcluster/index.html
http://cran.r-project.org/web/packages/blockcluster/index.html
http://147.102.82.122/ocpu/library/clusteringPkg/info
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-clustering
http://app.jaqpot.org:8080/jaqpot/services/algorithm/ocpu-clustering
https://www.python.org/
https://www.python.org/about/success/
http://www.numpy.org/
http://www.scipy.org/
http://www.rdkit.org/
http://openbabel.org/
http://lifescience.opensource.epam.com/indigo/
http://www.molprint.com/


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 24 of 50 

 

python is often used by researchers to either build custom machine learning algorithms, or apply 
already implemented ones to their chemical/biological datasets such as those provided by SciKit learn 
(http://scikit-learn.org/).  
 

3.4.2.1 ALGORITHMS AVAILABLE FROM SCIKIT LEARN 
 

SciKit learn (http://scikit-learn.org/) is an open-source python library for machine learning based on 
numpy and scipy, emphasizing on easy-to-use classification, regression and clustering algorithms. 
Implementations include generalized linear models (such as Ordinary Least Squares, Ridge Regression, 
Lasso, Elastic Net, Logistic Regression etc.), models for linear and quadratic discriminant analysis, kernel 
ridge regression, Support Vector Machines, Stochastic Gradient Descent, Nearest Neighbors, Gaussian 
Processes, Naive Bayes variations, numerous Decision Trees, Ensemble methods as well as functions for 
Feature selection (http://scikit-learn.org/dev/).  
 

3.4.2.2 SERVICE TECHNICAL DETAILS 
 

BEHIND THE SCENES 
The python web service implemented in this work was built using Flask (http://flask.pocoo.org/), a 
microframework based on the Jinja2 (http://jinja.pocoo.org/) and Werkzeug WSGI 
(http://werkzeug.pocoo.org/) libraries. Jinja2 is a template engine for python, whilst Werkzeug is a WSGI 
utility library, which incorporates very straightforward HTTP header parsing and easy-to-handle 
request/response objects. The entire web application fits nicely into a single python file. 
 

DATA HANDLING 
The application receives a JSON file containing a training request via a POST command containing a 
dataset, the feature for prediction and model parameters where applicable. The dataset field further 
contains the unique dataset URI and the data entry field filled with substance identifiers and property-
value pairs. Below is an example of a training request in JSON format. 
 
{ 
    "dataset": { 
        "datasetURI": "https://apps.ideaconsult.net/ambit2/dataset/R545", 
        "dataEntry": [ 
                      { 
                      "compound": { 
                      "URI": "https://apps.ideaconsult.net/ambit2/compound/17/conformer/419593" 
                      }, 
                      "values": { 
                      "https://apps.ideaconsult.net/ambit2/feature/22127": 0.268, 
                      "https://apps.ideaconsult.net/ambit2/feature/22137": 0.667, 
                      "https://apps.ideaconsult.net/ambit2/feature/22200": -5.331, 
                      "https://apps.ideaconsult.net/ambit2/feature/22213": 2, 
                      "https://apps.ideaconsult.net/ambit2/feature/22252": 0.352 
                      } 
                      }, 
                      { 
                      "compound": { 
                      "URI": "https://apps.ideaconsult.net/ambit2/compound/40746/conformer/419619" 
                      }, 
                      "values": { 
                      "https://apps.ideaconsult.net/ambit2/feature/22127": 0.115, 
                      "https://apps.ideaconsult.net/ambit2/feature/22137": 0.759, 
                      "https://apps.ideaconsult.net/ambit2/feature/22200": -5.342, 
                      "https://apps.ideaconsult.net/ambit2/feature/22213": 1, 
                      "https://apps.ideaconsult.net/ambit2/feature/22252": 0.213 
                      } 
                      }, 
       {...}, 
       ... 
                      ] 
    }, 
    "predictionFeature": "https://apps.ideaconsult.net/ambit2/feature/22137", 
    "parameters": { 
    } 

http://scikit-learn.org/
http://scikit-learn.org/
http://scikit-learn.org/dev/
http://flask.pocoo.org/
http://jinja.pocoo.org/
http://werkzeug.pocoo.org/


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 25 of 50 

 

} 

 
The curl command for a local implementation looks like: 
 
curl -i -H "Content-Type: application/json" -X POST -d @C:/Python27/Flask-0.10.1/python-api/train.json 
http://localhost:5000/pws/1 

 
The application converts the fields into python objects/variables and calls the algorithm for prediction. 
The web service response consists of the fields: 

 PMML model (where applicable)  

 Raw model: python model encoded in base64 format 

 Predicted feature: new feature name for attribute for which the model is being built 

 Independent features: Attributes used for building model and to be used for testing 

 Additional information: Any supplemental information the model may need, ranging from the 
URI of the predicted feature to parameters or meta-information that cannot be passed through 
the base64 encoding. 

 
An example of a training response is shown below: 
 
{ 
  "pmmlModel": "",  
  "rawModel": "Y2NvcHlfcmVnCl9yZWNvbnN0cnVj9yZS5tdWx0aWFycmF5CnNj [...] dHA0Mgpic2Iu",  
  "predictedFeatures": ["https://apps.ideaconsult.net/ambit2/feature/22137 predicted"],  
  "independentFeatures":  
    [ 
    "https://apps.ideaconsult.net/ambit2/feature/22200",  
    "https://apps.ideaconsult.net/ambit2/feature/22127",  
    "https://apps.ideaconsult.net/ambit2/feature/22213", 
    "https://apps.ideaconsult.net/ambit2/feature/22252" 
 ], 
  "additionalInfo": [{'predictedFeature':"https://apps.ideaconsult.net/ambit2/feature/22137 predicted"}] 
 } 

 
A similar POST command invokes the testing portion of the web service, from which the information 
from the training response JSON is incorporated into another dataset file with test instances. The 
“rawModel” field is decoded and any additional information is supplied to the predictive service along 
with the test instances.  A test dataset example can be found below: 
 
{ 
    "dataset": { 
        "datasetURI": ["https://apps.ideaconsult.net/ambit2/dataset/R545"], 
        "dataEntry": [{ 
                "compound": { 
                    "URI": "https://apps.ideaconsult.net/ambit2/compound/17/conformer/419593" 
                }, 
                "values": { 
                    "https://apps.ideaconsult.net/ambit2/feature/22127": 0.268, 
                    "https://apps.ideaconsult.net/ambit2/feature/22200": -5.331, 
                    "https://apps.ideaconsult.net/ambit2/feature/22213": 2, 
                    "https://apps.ideaconsult.net/ambit2/feature/22252": 0.352 
                } 
            }, { 
                "compound": { 
                    "URI": "https://apps.ideaconsult.net/ambit2/compound/40746/conformer/419619" 
                }, 
                "values": { 
                    "https://apps.ideaconsult.net/ambit2/feature/22127": 0.115, 
                    "https://apps.ideaconsult.net/ambit2/feature/22200": -5.342, 
                    "https://apps.ideaconsult.net/ambit2/feature/22213": 1, 
                    "https://apps.ideaconsult.net/ambit2/feature/22252": 0.213 
                } 
            }, { 
                ... 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 26 of 50 

 

    }] 
    }, 
    "rawModel": "Y2NvcHlJ1x4MTJceGY [...] veVx4OTc/JwpwNDEKdHA0Mgpic2Iu",      
 "additionalInfo": [{ 
             "predictedFeature": "https://apps.ideaconsult.net/ambit2/feature/22137 predicted" 
            }] 
} 

 
The response once again consists of a JSON file containing a dictionary with property- predicted value 
pairs in the same order as the test file to be later appended as an extra field in JAQPOT. The test 
response looks like: 
 
{ 
    "predictions": [{ 
            "https://apps.ideaconsult.net/ambit2/feature/22137 predicted": 0.715 
        }, { 
            "https://apps.ideaconsult.net/ambit2/feature/22137 predicted": 0.933 
        }, { 
  ... 
    }] 
} 

 

 

3.4.2.3  ALGORITHMS IMPLEMENTED IN THE PYTHON WEB SERVICE 
 

The purpose behind the development of the python web service is to provide users with more modelling 
choices, as well as to allow developers/researchers to dynamically post their own algorithms and thus 
keep the service updated and up-to-speed with current developments through the passage of time. In 
the first instance, we incorporated the LinearRegression which implements the Ordinary Least Squares 
algorithm and the LASSO function from SciKit learn, as well Quinlan’s ID3 decision tree and Partial Least 
Squares with Variable Importance in Projection scoring.  

 

ORDINARY LEAST SQUARES 
 
The LinearRegression function fits a linear model in order to minimize the residual sum of squares 
between the observed and predicted responses by linear approximation (http://scikit-
learn.org/stable/modules/linear_model.html). More specifically, it takes a matrix X (array of 1D instance 
arrays per variable) such as [[0, 0], [1, 1], [2, 2]] and an array Y (prediction feature), for example [0, 1, 2] 
and fits a linear model with coefficients wi (where i = number of variables) stored in an array ([ 0.5,  0.5]) 
and used later with the SciKit learn predict function.  
The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-lm 
 

LASSO 
 
Lasso (http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html) is a linear 
model that estimates sparse coefficients. It tends to reach solutions with fewer parameter values, thus 
reducing the number of variables used for a prediction. Lasso and algorithms derived from it are claimed 
to be fundamental to the field of compressed sensing. It is trained with L1 prior as regularizer and 
attempts to minimize the following: 
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1  
Where alpha is a user-specified constant and  ||w||_1 is the L1 norm of the parameter vector. Lasso 
optimizes the same objective function as the Elastic Net with l1_ratio=1.0, which means no L2 penalty. 

http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/linear_model.html
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-lm
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 27 of 50 

 

The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-lasso 
 
Parameters: 

 alpha (optional). Constant that multiplies the L1 term. Default value: 1 
 

ID3 DECISION TREE 
 
The ID3 classification algorithm builds a decision tree, which at each node recursively splits the data into 
subsets according to the values of a selected attribute. These splits occur until the termination criteria of 
the algorithm are met, where a classification outcome is assigned. The splits are made based on 
information gain, for which attributes are evaluated for their information content compared to the 
target variable or class. At each node the variable with highest information content is selected until the 
split does not yield any more information. Information gain has been implemented to handle numeric 
values for attributes. 
By default, this algorithm cannot handle numeric data for its prediction feature, as this must be a class. 
However, according to Scott’s normal reference rule (Scott 1979), the outcome variable values are 
evaluated during training and automatically put into bins. Therefore, even for continuous data, the 
algorithm can still yield a prediction within a range i.e. [0.5, 0.8) which is technically a nominal value. 
The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-id3 
 
 

PARTIAL LEAST SQUARES With “VARIABLE IMPORTANCE IN PROJECTION” scores 
 
PLS-VIP is an exhaustive search for the best PLS model, optimized for the number of attributes used, the 
choice of these attributes and the number of latent variables. At each iteration, the attributes are 
evaluated on their VIP score for the optimal number of latent variables. For this step all allowed values 
for latent variables are evaluated. The worst variable is eliminated based on the lowest VIP score and 
the algorithm continues until no attributes are left. The PLS R2 score at each step (for each number of 
attributes and their optimal number latent variables) for the particular set of attributes is stored in a 
matrix. The highest performing PLS model is the resulting training model.   
The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-pls-vip 
 
Parameters: 

 latentVariables (mandatory). Number of latent variables to use. Must be smaller than number of 
attributes. Default value: num_attr -1 

 

 
3.4.3 INTEGRATION OF WEKA INTO THE ENANOMAPPER COMPUTATIONAL 

INFRASTRUCTURE - DEVELOPMENT OF A MODELLING WEB SERVICE USING THE 

WEKA DATA MINING SOFTWARE  
 

The Waikato Environment for Knowledge Analysis tool (Weka; http://www.cs.waikato.ac.nz/ml/weka/) 
is an open source data mining software written in Java, boasting a vast collection of machine learning 
algorithms suitable for addressing a plethora of data mining problems. These include methods for 
classification, regression and clustering, as well as association rules among attributes. Weka also allows 

http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-lasso
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-id3
http://app.jaqpot.org:8080/jaqpot/services/algorithm/python-pls-vip
http://www.cs.waikato.ac.nz/ml/weka/


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 28 of 50 

 

both supervised and unsupervised data pre-processing, ranging from data discretization and 
mathematical operations, all the way to principal component projection and feature selection, using 
methods such as information gain. Finally, it includes a flexible data visualizer for both input and output. 
Weka is highly popular due to its straightforward GUI, which allows all operations to be completed 
within a few clicks, as well as the number of widely used algorithms implemented and the variety of 
readable file formats allowed (such as ARFF and CSV). Each algorithm is initialized with suggested 
default values for its parameters, thus allowing the software to also be used by non-experts. However, 
for those which know the intricate details of each algorithm, the parameters can be adjusted for 
optimized results. It includes options for both internal cross-validation and user-provided external 
validation test set, as well as statistical measures for assessing the derived model quality and predictive 
power.  
 

 

3.4.3.1 SERVICE TECHNICAL DETAILS 
 

BEHIND THE SCENES 
 
JQ provides a collection of basic algorithmic implementations under the JPDI protocol as a module of the 
core system, in order to provide a starting functionality as well as demonstrating the use of JPDI. This 
module gets shipped inside the Jaqpot EAR bundle but does not utilize any of the EJB service layers of 
the core system, showing the exact same behaviour as expected of an external JPDI algorithm service, 
which sums up in being able to provide clean restful and stateless resources for each algorithm 
implementation that keep no internal state or data whatsoever. 
 
The module consists of a set of preprocessing algorithms and a domain of applicability calculation 
algorithm, coded by the Jaqpot development team, and a set of training algorithms, powered by the 
well-established machine learning libraries Weka (v 3.6.12) and LibSVM (v 3.17). Each algorithm has its 
own resource URI under the path /algorithms and different functions for training and prediction 
mapped on /training and /prediction endpoints 
 
DATA HANDLING 
 
The application receives a JSON file containing a training request via a POST command containing a 
dataset, the feature for prediction and model parameters where applicable. The dataset field further 
contains the unique dataset URI and the data entry field filled with substance identifiers and property-
value pairs.  
 
The application converts the fields into Weka objects/variables and calls algorithm for prediction. The 
web service response consists of the fields: 
-Pmml model (for model transferability)  
-Raw model: Weka model encoded in base64 format 
-Predicted feature: new feature name for attribute for which the model is being built 
-Independent features: Attributes used for building model and to be used for testing 
-Additional information: Any supplemental information the model may need, ranging from the URI of 
the predicted feature to parameters or meta-information that cannot be passed through the base64 
encoding. 
 
A similar POST command invokes the testing portion of the web service, from which the information 
from the training response JSON is incorporated into another dataset file with test instances. The 
“rawModel” field is decoded and any additional information is supplied to the predictive service along 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 29 of 50 

 

with the test instances. The response once again consists of a JSON file containing a dictionary with 
property- predicted value pairs in the same order as the test file to be later appended as an extra field in 
JAQPOT.  
 

3.4.3.2 ALGORITHMS IMPLEMENTED IN THE WEKA WEB SERVICE 
 

LINEAR REGRESSION 
Linear Regression that uses the Akaike criterion for model selection, and is able to deal with weighted 
instances. The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-mlr 
 

PARTIAL LEAST SQUARES REGRESSION 
Partial Least Squares Regression with Simpls and PLS1 supported. The implementation can be found 
under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-pls 
 
Parameters: 

 algorithm (optional). The algorithm to use. Default value: “PLS1”. Available choices: SIMPLS, 
PLS1. 

 components (optional). The number of components to compute. Default value: 20 
 

RADIAL BASIS FUNCTION NETWORK 
RBFNetwork Implements a normalized Gaussian radial basis function network. It uses the k-means 
clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class 
problems) or linear regression (numeric class problems) on top of that. The implementation can be 
found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-rbf 
 
Parameters: 

 seed (optional). Set the random seed to be used by K-means. Default value: 1 

 maxClusters (optional). Maximum number of clusters to generate. Default value: 2 

 minStdDev (optional). Sets the minimum standard deviation for the clusters. Default value: 0.1 

 maxIts (optional). Maximum number of iterations for the logistic regression to perform Default 
value: -1 

 ridge (optional). Set the ridge value for the logistic or linear regression. Default value: 1e-8 
 

SUPPORT VECTOR MACHINES 
Support Vector Machine LibSVM implementation that supports One-class SVM, Regressing SVM, and nu-
SVM. The implementation can be found under: 
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-svm 
 
Parameters: 

 cost (optional). Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR. Default value: 100 

 gamma (optional). Set gamma in kernel function. Default value: 1.5  

 epsilon (optional). Set the epsilon in loss function of epsilon-SVR. Default value: 0.1 

 coeff0 (optional). Set coeff0 in kernel function. Default value: 0 

 cacheSize (optional). The size of the cache (a prime number), 0 for full cache and -1 to turn it off. 
Default value: 25077 

http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-mlr
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-pls
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-rbf
http://app.jaqpot.org:8080/jaqpot/services/algorithm/weka-svm


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 30 of 50 

 

 kernel (optional). Set type of kernel function. Default value: “RBF”. Available choices: 0 = 
“linear”, 1 = “polynomial”, 2 = “radial basis function”, 3 = “sigmoid” 

 loss (optional). Set the epsilon in loss function of epsilon-SVR. Default value: 0.1 

 nu (optional). Set the parameter nu of nu-SVC, one-class SVM, and nu-SVR. Default value: 0.5 

 degree (optional). Set degree in kernel function. Default value: 3 

 type (optional). Type of SVM. Default value: “NU_SVR”. Available choices: 0=”C-SVC”, 1=”nu-
SVC”, 2=”one-class SVM”, 3=”epsilon-SVR”, 4=”nu-SVR” 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 31 of 50 

 

 

4. DEMONSTRATION OF THE JAQPOT 
MODELING WORKLFOW  
 
 
A full demonstration of the JQ modelling workflow will be given in this section with the help of the 
Swagger interface for visualization of the functionality of the web services. Starting from a bundle with 
experimental data, a dataset with numerical data will be created. Mathematical operations specified by 
a PMML file will be performed on this dataset to produce the final dataset, which will be used to train a 
model using the JQ implementation of the R multivariable linear regression algorithm. The model will be 
applied to a test dataset in order to obtain predictions. 
 

4.1 FROM EXPERIMENTAL DATA BUNDLE TO DATASET 
 
For this demonstration, we will use the experimental results published by Walkey et. al. (2014) on gold 
nanoparticles, which are stored as a bundle at this URI: 
https://apps.ideaconsult.net/enmtest/bundle/27 (Figure 9).  This bundle contains experimental data for 
84 surface-modified gold nanoparticles, extracted from different characterization assays. The aim is to 
produce a multivariable linear nQSAR model that predicts cell association as a linear combination of two 
input parameters (zeta potential after synthesis and zeta potential after exposure) as well as four 
transformations on these parameters that are defined later in this section. Cell association is the end-
point used in the reference publication, because of its relevance to inflammatory responses, 
biodistribution and toxicity in-vivo. 
 
The Swagger API interface (http://swagger.io/) will be used to communicate with the web services and 
demonstrate their functionality. On the top of the Swagger page shown in Figure 1, we can see the URI 
for the web service documentation used and an alphanumeric string which is a token retrieved on 
behalf of the user. This token contains ‘guest’ privileges and allows access to all eNanoMapper services 
and databases. Users which want to access datasets available specifically to a user must supply a token 
for their account, which can be done at this page at 
http://app.jaqpot.org:8080/jaqpot/swagger/#!/aa/login (for details, please see Appendix I, in D4.2). 
 
 

https://apps.ideaconsult.net/enmtest/bundle/27
http://swagger.io/
http://app.jaqpot.org:8080/jaqpot/swagger/#!/aa/login


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 32 of 50 

 

 
Figure 9 Details on content of a bundle 

The function of “cleaning up” a bundle to create a dataset with only the relevant entries is implemented 
as shown in the Swagger interface in Figure 10. The user needs to input the “parent” bundle, from which 
the dataset will be produced. 
 

 
Figure 10 Swagger form for creation of dataset from bundle 

Hitting the “Try it out!” button on the bottom of the page informs the user that a task has been queued; 
using the task id provided, the user can query its current status, as in Figure 11. 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 33 of 50 

 

 
Figure 11 Query of task id 

The output of the query is as follows, where we can see that the task has been completed. The URI of 
the dataset produced can be found in the resultUri field (see highlighted fields): 
 
{ 
  "meta": { 
    "comments": [ 
      "Preparation Task is now running with ID Thread-97 (HornetQ-client-global-threads-401950683)", 
      "Starting Dataset preparation...", 
      "Dataset ready.", 
      "Saving to database...", 
      "Dataset saved successfully.", 
      "Preparation Task is now completed." 
    ], 
    "descriptions": [ 
      "A preparation procedure will return a Dataset if completed successfully. It may also initiate other procedures if desired." 
    ], 
    "titles": [ 
      "Preparation on bundle: https://apps.ideaconsult.net/enmtest/bundle/27" 
    ], 
    "hasSources": [ 
      null 
    ], 
    "date": "2015-06-25T11:13:11.570+0000" 
  }, 
  "resultUri": "http://app.jaqpot.org:8080/jaqpot/services/dataset/SFz42r0XiMLO", 
  "result": "dataset/SFz42r0XiMLO", 
  "percentageCompleted": 100, 
  "httpStatus": 200, 
  "createdBy": "guest", 
  "type": "PREPARATION", 
  "_id": "TSKNLbasv7AEYe5", 
  "status": "COMPLETED" 
} 

 
The produced dataset can be seen by clicking on the dataset URI (see Figure 12): 
http://app.jaqpot.org:8080/jaqpot/services/dataset/SFz42r0XiMLO  
 

http://app.jaqpot.org:8080/jaqpot/services/dataset/SFz42r0XiMLO


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 34 of 50 

 

 
Figure 12 Dataset produced from bundle 

 

4.2 USING THE DATASET FOR MODELLING 
 
Using the input dataset created above and an algorithm of our choice, we can now create a model. The 
algorithm selection is carried out by simply adding its URI to the list of model parameters. The following 
user-specified parameters are provided in the modelling interface:   

 dataset_uri: (URI of the input dataset) 
http://app.jaqpot.org:8080/jaqpot/services/dataset/SFz42r0XiMLO  

 prediction_feature: here we wish to create a model that predicts the log2 transformed value of 
the Cell Association, as reported in the source publication: 
https://apps.ideaconsult.net/enmtest/property/TOX/UNKNOWN_TOXICITY_SECTION/Log2+tran
sformed/94D664CFE4929A0F400A5AD8CA733B52E049A688/3ed642f9-1b42-387a-9966-
dea5b91e5f8a 

 parameters: (Algorithm-specific parameters can be specified in this field) {blank} The R linear 
regression implementation is not associated with tuning parameters. 

 scaling: {blank} The field was left blank as no scaling was used. 

 domain of applicability: We used the Leverage algorithm for DoA calculations. 

 transformations: The user can apply any of the transformations available in the PMML language 
(Pechter, 2009) and stored in a separate PMML file. The use of PMML has been first described in 
Deliverable 4.1 and here we will show its implementation. Users can upload a PMML file (it uses 
the .xml file format) to make it available to Jaqpot and other web services using the interface at 
http://app.jaqpot.org:8080/jaqpot/swagger/#!/pmml/createPMML. The file for our example has 
been made available at http://app.jaqpot.org:8080/jaqpot/services/pmml/tYpyGNyqPX and can 
be viewed below. In this case we use PMML to form a new dataset that consists of the absolute 
values of two variables (Zeta Potential with and without human serum), their difference and 
quotient. The predicted variable declared above is added automatically. 

 id: We will use the linear modelling algorithm from R, available through OpenCPU, with ID: 
ocpu-lm. 

 subjectid: {blank} (guest token will be used). 

http://app.jaqpot.org:8080/jaqpot/services/dataset/SFz42r0XiMLO
https://apps.ideaconsult.net/enmtest/property/TOX/UNKNOWN_TOXICITY_SECTION/Log2+transformed/94D664CFE4929A0F400A5AD8CA733B52E049A688/3ed642f9-1b42-387a-9966-dea5b91e5f8a
https://apps.ideaconsult.net/enmtest/property/TOX/UNKNOWN_TOXICITY_SECTION/Log2+transformed/94D664CFE4929A0F400A5AD8CA733B52E049A688/3ed642f9-1b42-387a-9966-dea5b91e5f8a
https://apps.ideaconsult.net/enmtest/property/TOX/UNKNOWN_TOXICITY_SECTION/Log2+transformed/94D664CFE4929A0F400A5AD8CA733B52E049A688/3ed642f9-1b42-387a-9966-dea5b91e5f8a
http://app.jaqpot.org:8080/jaqpot/swagger/#!/pmml/createPMML
http://app.jaqpot.org:8080/jaqpot/services/pmml/tYpyGNyqPX


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 35 of 50 

 

<PMML version="4.0" 
    xsi:schemaLocation="http://www.dmg.org/PMML-4_0 
    http://www.dmg.org/v4-0/pmml-4-0.xsd" 
    xmlns="http://www.dmg.org/PMML-4_0" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
 
<DataDictionary numberOfFields="4" > 
  <DataField name="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/7F8B3FB82019B1CCF8A8C3FD2B5A2DACBDDDB832/3ed642f9-1b42-
387a-9966-dea5b91e5f8a" optype="continuous" dataType="double" /> 
   
  <DataField name="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/06399AE1609F65589E8D7C6DECF4A7E8565336CA/3ed642f9-1b42-
387a-9966-dea5b91e5f8a" optype="continuous" dataType="double" /> 
   
</DataDictionary> 
<TransformationDictionary> 
   <DerivedField dataType="double" name="zp_ch" optype="categorical"> 
      <Apply function="-"> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/7F8B3FB82019B1CCF8A8C3FD2B5A2DACBDDDB832/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/06399AE1609F65589E8D7C6DECF4A7E8565336CA/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
      </Apply> 
   </DerivedField> 
   <DerivedField dataType="double" name="zp_rel" optype="categorical"> 
      <Apply function="/"> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/7F8B3FB82019B1CCF8A8C3FD2B5A2DACBDDDB832/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/06399AE1609F65589E8D7C6DECF4A7E8565336CA/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
      </Apply> 
   </DerivedField> 
   <DerivedField dataType="double" name="zp_synth_mag" optype="categorical"> 
      <Apply function="abs"> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/7F8B3FB82019B1CCF8A8C3FD2B5A2DACBDDDB832/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
      </Apply> 
   </DerivedField> 
   <DerivedField dataType="double" name="zp_serum_mag" optype="categorical"> 
      <Apply function="abs"> 
         <FieldRef field="https://apps.ideaconsult.net/enmtest/property/P-
CHEM/ZETA_POTENTIAL_SECTION/ZETA+POTENTIAL/06399AE1609F65589E8D7C6DECF4A7E8565336CA/3ed642f9-1b42-
387a-9966-dea5b91e5f8a"/> 
      </Apply> 
   </DerivedField> 
</TransformationDictionary> 
  </PMML> 

 
After, hitting the “Try it out!” button the user is notified that a task has been initiated with the following 
id: JqDUnYgb3I4W. Querying this task id at http://app.jaqpot.org:8080/jaqpot/swagger/#!/task/getTask 
shows the following information:  
{ 
  "meta": { 
    "comments": [ 
      "Training task created", 
      "Training Task is now running.", 
      "--", 
      "Processing transformations...", 
      "-", 
      "Starting training on transformation algorithm:http://app.jaqpot.org:8080/jaqpot/services/algorithm/pmml", 
      "Training task created:http://app.jaqpot.org:8080/jaqpot/services/task/GGxgel6nbzI4", 
      "Transformation model created successfully:http://app.jaqpot.org:8080/jaqpot/services/model/SLnI8mUX9HJ9", 
      "Prediction task created:http://app.jaqpot.org:8080/jaqpot/services/task/TSKlXhzZeCt41vj", 
      "Transformed dataset created successfully:http://app.jaqpot.org:8080/jaqpot/services/dataset/rbLnSXJw3YwHRe", 

http://app.jaqpot.org:8080/jaqpot/swagger/#!/task/getTask


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 36 of 50 

 

      "-", 
      "Starting training on linked algorithm:http://app.jaqpot.org:8080/jaqpot/services/algorithm/leverage", 
      "Training task created:http://app.jaqpot.org:8080/jaqpot/services/task/D5cUFT8loUaY", 
      "Linked model created successfully:http://app.jaqpot.org:8080/jaqpot/services/model/APCFYvgmxeNK", 
      "--", 
      "Training dataset URI is:http://app.jaqpot.org:8080/jaqpot/services/dataset/rbLnSXJw3YwHRe", 
      "Attempting to download dataset...", 
      "Dataset has been retrieved.", 
      "Creating JPDI training request...", 
      "Inserted dataset.", 
      "Inserted prediction feature.", 
      "Inserted parameters.", 
      "Inserted algorithm id.", 
      "Sending request to  algorithm service:http://app.jaqpot.org:8004/ocpu/library/PLMplusPMMLpkg/R/lm.funct/json", 
      "Algorithm service responded with status:200", 
      "Attempting to parse response...", 
      "Response was parsed successfully", 
      "Building model...", 
      "Defining the prediction features", 
      "Model was built successfully", 
      "Model was built successfully. Now saving to database...", 
      "Task Completed Successfully." 
    ], 
    "descriptions": [ 
      "Training task using algorithm ocpu-lm" 
    ], 
    "titles": [ 
      "Training on algorithm: ocpu-lm" 
    ], 
    "hasSources": [ 
      "algorithm/ocpu-lm" 
    ], 
    "date": "2015-07-14T08:36:51.390+0000" 
  }, 
  "resultUri": "http://app.jaqpot.org:8080/jaqpot/services/model/VZ4xuG8WJUbn", 
  "result": "model/VZ4xuG8WJUbn", 
  "percentageCompleted": 100, 
  "httpStatus": 201, 
  "createdBy": "guest", 
  "duration": 14111, 
  "type": "TRAINING", 
  "_id": "JqDUnYgb3I4W", 
  "status": "COMPLETED" 

} 

 
The task has been completed and we are provided with a model URI:  
http://app.jaqpot.org:8080/jaqpot/services/model/VZ4xuG8WJUbn. We can use the model id 
(VZ4xuG8WJUbn) to send a query at 
http://app.jaqpot.org:8080/jaqpot/swagger/#!/model/getModelPmml (Figure 13) and receive the 
model in PMML form, as below: 
 
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2/pmml-4-2.xsd"> 
   <Header copyright="Copyright (c) 2015 www-data" description="Linear Regression Model"> 
      <Extension name="user" value="www-data" extender="Rattle/PMML"/> 
      <Application name="Rattle/PMML" version="1.4"/> 
      <Timestamp>2015-07-14 08:37:05</Timestamp> 
   </Header> 
   <DataDictionary numberOfFields="5"> 
      <DataField name="x1" optype="continuous" dataType="double"/> 
      <DataField name="x2" optype="continuous" dataType="double"/> 
      <DataField name="x3" optype="continuous" dataType="double"/> 
      <DataField name="x4" optype="continuous" dataType="double"/> 
      <DataField name="x5" optype="continuous" dataType="double"/> 
   </DataDictionary> 
   <RegressionModel modelName="Linear_Regression_Model" functionName="regression" algorithmName="least 

squares"> 
      <MiningSchema> 

http://app.jaqpot.org:8080/jaqpot/services/model/VZ4xuG8WJUbn
http://app.jaqpot.org:8080/jaqpot/swagger/#!/model/getModelPmml


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 37 of 50 

 

         <MiningField name="x1" usageType="predicted"/> 
         <MiningField name="x2" usageType="active"/> 
         <MiningField name="x3" usageType="active"/> 
         <MiningField name="x4" usageType="active"/> 
         <MiningField name="x5" usageType="active"/> 
      </MiningSchema> 
      <Output> 
         <OutputField name="Predicted_x1" feature="predictedValue"/> 
      </Output> 
      <RegressionTable intercept="-8.49158823688487"> 
         <NumericPredictor name="x2" exponent="1" coefficient="0.131823732845061"/> 
         <NumericPredictor name="x3" exponent="1" coefficient="0.233801765980121"/> 
         <NumericPredictor name="x4" exponent="1" coefficient="0.136671740405479"/> 
         <NumericPredictor name="x5" exponent="1" coefficient="0.12020574120013"/> 
      </RegressionTable> 
   </RegressionModel> 

</PMML> 

 
The PMML representation of the model provides full information on the algorithm used, the dependent 
and independent features and predicted variable and allows rapid deployment on any platform that 
supports PMML without additional code. 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 38 of 50 

 

 
Figure 13 Querying the model 

 

4.3 USING THE MODEL FOR PREDICTIONS 
 
With the model at hand, predictions can be made on a different set of instances. A separate test dataset 
will be used for this example, which can be found at: 
http://app.jaqpot.org:8080/jaqpot/services/dataset/lGJBKSO6Wr8X  

 
As shown in Figure 14, the Swagger interface requires to be provided with the URI of the dataset on 
which the model will be applied and the id of the model that will be used. After the modelling has been 
initiated, we receive the following message of a new task that has been queued:  

{ 
  "meta": { 
    "comments": [], 

http://app.jaqpot.org:8080/jaqpot/services/dataset/lGJBKSO6Wr8X


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 39 of 50 

 

 
 
 

 
Figure 14 Applying the model to the test dataset 

 
 
Querying the task id at http://app.jaqpot.org:8080/jaqpot/swagger/#!/task/getTask provides the user 
with information on the various stages of the modelling task and its final status.  

    "descriptions": [ 
      "A prediction procedure will return a new Dataset if completed successfully." 
    ], 
    "titles": [ 
      "Prediction by model VZ4xuG8WJUbn" 
    ], 
    "hasSources": [ 
      null 
    ], 
    "date": "2015-07-14T08:43:23.617+0000" 
  }, 
  "httpStatus": 202, 
  "createdBy": "guest", 
  "type": "PREDICTION", 
  "_id": "TSKnY8pDQuN089o", 
  "status": "QUEUED" 

} 

http://app.jaqpot.org:8080/jaqpot/swagger/#!/task/getTask


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 40 of 50 

 

 
{ 
  "meta": { 
    "comments": [ 
      "Prediction Task is now running.", 
      "Attempting to find model in database...", 
      "Model retrieved successfully.", 
      "--", 
      "Processing transformations...", 
      "Transformation task created:http://app.jaqpot.org:8080/jaqpot/services/task/TSKD1JzpipEiMT1", 
      "Transformed dataset created successfully:http://app.jaqpot.org:8080/jaqpot/services/dataset/szu95fY8BCuTa9", 
      "--", 
      "--", 
      "Processing linked models...", 
      "Prediction task created:http://app.jaqpot.org:8080/jaqpot/services/task/TSKf9DQanOj4tbl", 
      "Prediction dataset created successfully:http://app.jaqpot.org:8080/jaqpot/services/dataset/cN5kyfiilhotXT", 
      "--", 
      "Attempting to download dataset...", 
      "Dataset has been retrieved.", 
      "Dataset has been cleaned from unused values.", 
      "Creating JPDI prediction request...", 
      "Sending request to algorithm service:http://app.jaqpot.org:8004/ocpu/library/PLMplusPMMLpkg/R/pred.funct/json", 
      "Algorithm service responded with status:200", 
      "Attempting to parse response...", 
      "Response was parsed successfully.", 
      "Creating new Dataset for predictions...", 
      "Dataset ready.", 
      "Saving to database...", 
      "Dataset saved...", 
      "Task Completed Successfully." 
    ], 
    "descriptions": [ 
      "A prediction procedure will return a new Dataset if completed successfully." 
    ], 
    "titles": [ 
      "Prediction by model VZ4xuG8WJUbn" 
    ], 
    "hasSources": [ 
      null 
    ], 
    "date": "2015-07-14T08:43:23.617+0000" 
  }, 
  "resultUri": "http://app.jaqpot.org:8080/jaqpot/services/dataset/JYKC24AkXw5Koa", 
  "result": "dataset/JYKC24AkXw5Koa", 
  "percentageCompleted": 100, 
  "httpStatus": 201, 
  "createdBy": "guest", 
  "type": "PREDICTION", 
  "_id": "TSKnY8pDQuN089o", 
  "status": "COMPLETED" 

} 

 
The output dataset with the predictions is available at the following URI (Figure 15): 
http://app.jaqpot.org:8080/jaqpot/services/dataset/JYKC24AkXw5Koa  
 

http://app.jaqpot.org:8080/jaqpot/services/dataset/JYKC24AkXw5Koa


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 41 of 50 

 

 
Figure 15 Output dataset with prediction feature 

 
Figure 16 JSON representation of  predicted feature 

 
Figure 17 JSON representation of  DoA feature  

 
The new dataset consists of the original values from the input dataset plus the predictions and the 
domain of applicability values, which are represented by newly created features, which can be found at: 
http://app.jaqpot.org:8080/jaqpot/services/feature/7nZa0JZAbbXJ and 
http://app.jaqpot.org:8080/jaqpot/services/feature/V2fDrolIYA1w. Figure 15 highlights the prediction 
and the DoA value for a specific substance (a DoA value closer to 1 shows greater confidence for the 
prediction, while the 0 value means that the specific substance is outside the DoA of the model).   The 
URIs of the newly created features (Figure 16, Figure 17) give us information on the features and the 
algorithms used to produce predictions or DoA values. It must be noted here that, instead of 
"algorithm/ocpu-lm" as in the prediction, the "hasSources" field contains "algorithm/leverage", to 
indicate the origin of its values. 

http://app.jaqpot.org:8080/jaqpot/services/feature/7nZa0JZAbbXJ
http://app.jaqpot.org:8080/jaqpot/services/feature/V2fDrolIYA1w


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 42 of 50 

 

 

5. RREGRS PACKAGE 
 
We have implemented an R package, called RRegrs, for computer-aided model selection with regression 
algorithms, as well as individually implemented methodologies utilized within the eNanoMapper 
computational infrastructure. The RRegrs (R Regressions) tool (Tsiliki et al., 2015) is a standardized 
framework that automates the development of a reliable and well-validated QSAR model or set of 
models. RRegrs is mainly based on the R caret package and is focusing on regression modelling providing 
a standardization methodology to search across the model space and produce a validated predictive 
model. The main advantage of this package is that only one RRegrs call is needed (call RRegrs function) 
to run the entire workflow and obtain the produced QSAR model(s) in a reproducible format in contrast 
to the standard, inefficient and time-consuming QSAR modelling workflow, where the modeller tries 
many different algorithms and tuning parameter in each algorithm. RRegrs suggests an easy way to 
explore the models' search space for linear to non-linear models with special parameters specifications 
and cross validation schemes. Model outputs are easily accessible and readable, organized by methods, 
centralized and averaged by multiple reproducible data set splits. Summary files are also produced 
helping the user to easily access all methodology results. The current implementation of the RRegrs 
package contains ten different regression algorithms. Utilization of this package does not require 
advanced knowledge of R, but on the other hand an experienced R user can easily modify or extend the 
package, by including the algorithms of his/her choice. RRegrs call could be integrated into complex 
desktop/Web tools for QSAR and is available as an open repository at 
https://github.com/enanomapper/RRegrs or as a fist release with DOI 10.5281/zenodo.16446.  
 
In Figure 18 we show the main flowchart of the RRegrs function. It can be seen that the main function of 
the package (RRegrs) contains several sections: loading parameters and dataset, remove near zero 
variance features, scaling dataset, remove correlated features, dataset splitting, run the ten regression 
methods, summary of statistics for all methods and splitting’s, averages for each method and cross-
validation type for all methods for splitting, automatic best model statistics, best model Y-
randomization. Assessment of Domain of Applicability was included in each method.  
 
In order to use RRegrs function, it is needed to specify a minimum set of parameters (the others will get 
default values). All the parameters will be written into a CSV file (ex: Parameters.csv), in the same 
working folder where it should be present the input dataset file and the outputs files. The dataset needs 
to have CSV format, with the first column as the dependent variable. The input and output files will be 
placed into a working folder. The output files are CSV statistics files, PDF and PNG plots. In the following 
sections we present the special features of RRegrs package and the flexibility they offer. However, as 
already specified earlier in the text, the user has the option to apply all functions using the default 
settings introduced in the manual and help files of the package.   

https://github.com/enanomapper/RRegrs


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 43 of 50 

 

 
Figure 18 RRegrs methodology flowchart. The main steps followed by the RRegrs function are indicated 

as well as the input parameters needed and the format of the output produced 

 
 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 44 of 50 

 

EMBEDDED REGRESSION MODELS 
 
RRegrs represents a simple tool to screen any dataset for the best regression model using ten 
implemented regression methods: 

1. Linear Multi-regression (LM) 
2. Generalized Linear Model with Stepwise Feature Selection (GLM) 
3. Partial Least Squares Regression (PLS) 
4. Lasso regression (LASSO) 
5. Elastic Net regression (ENET) 
6. Support vector machine using radial functions (SVM radial) 
7. Neural Networks regression (NN) 
8. Random Forest (RF) 
9. Random Forest-Recursive Feature Elimination (RF-RFE) 
10. Support Vector Machines Recursive Feature Elimination (SVM-RFE) 

 

The above regression methodologies can be categorized into two wide categories of linear and non-
linear models since it was our intention to include a variety of algorithms that could well describe the 
submitted data. Three of the above methodologies were introduced in D4.1, namely LASSO, ENET, RF 
methodologies. Others, such as LM and PLS models were also introduced for the OpenTox 
infrastructure, however we are also including them into RRegrs to make use of the unified output 
produced as well as its model comparison capabilities.  

Also, the RFE methodology was introduced in D4.1 as an important feature selection algorithm, 
particularly it is a backwards variable selection method that fits the model to all predictors and each 
predictor is ranked based on its importance to the model. Recursive feature elimination (RFE) is a 
backwards variable selection method. The RFE algorithm fits the model to all predictors, where each 
predictor is ranked using its importance to the model. During each iteration of the feature selection, the 
S top ranked predictors are retained, the model is refit and performance is assessed. The predictor 
rankings could be recomputed on each reduced feature set, which would generally increase 
performance, although it has been shown that in some algorithms (e.g. Random Forest) there is a 
decrease in performance57. Tuning parameters include the specification of the number of features that 
should be retained, and the external resampling method used (options are bootstrap, LOOCV, CV, 
repeated LOOCV).  

EMBEDDED CROSS VALIDATION SCHEMES 
For each model, a CV scheme is introduced with two options: 10-fold repeated CV and LOO CV. In the 
case of repeated CV, we run 10 repeats of 10-fold CV for all models except SVM-RFE (3-folds, 1 repeat) 
and RF-RFE (5-folds, 1 repeat), which are considerable time-consuming methods. The procedure 
followed by caret and also introduced in RRegrs tool, randomly splits the data in K distinct blocks of 
roughly equal size (K = 10, 3, 5 depending on the method). Each block of data is left out sequentially, and 
the model is fit to the remaining of the data; this model is used to predict the held out block. The 
process is repeated where for each repetition a random proportion of the data are used to train the 
model (default value is 0.75) while the remainder is used for prediction. Average performance across 
the number of repeats, or across the LOO runs, are reported. When a model requires parameters 
selection, averaged values are returned per parameter (set) and the best model is selected based on the 
minimum RMSE statistic and the maximum R2

test ≤0.005. 
 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 45 of 50 

 

In order to further validate RRegrs test results, Y-randomization is applied to the best model found. For 
the last data split and the best model found, RRegrs performs Y-randomization for the 10- fold repeated 
CV scheme, and compares R2 test values to the best model corresponding value.  
 

PARALLEL COMPUTING UTILITY 
RRegrs offers parallel support for calculations only in the more time-intense and computationally 
demanding methodologies, i.e. SVM, NN, RF, RF-RFE, SVM-RFE. A variable called noCores is included to 
indicate the number of CPU cores to be used for calculation with available options being 0=all available, 
1=no parallel, n = specific number of cores. Depending on the operating system, different parallel R 
package will be needed, i.e. doMC package for Linux or Mac (http://cran.r-
project.org/web/packages/doMC/index.html), doSNOW 
(http://cran.r-project.org/web/packages/doSNOW/index.html) and foreach (http://cran.r-
project.org/web/packages/foreach/index.html) packages for Windows. When using RStudio in 
Windows, several processes will be created and if all the available cores will be used, the computer will 
become very slow (it is indicated the use of available cores-1 and the restart of RStudio to free the RAM 
between calculations). 
 

ADDITIONAL RREGRS FEATURES 
As was introduced in Figure 18, RRegrs includes scaling options, and particularly the following three 
options are available: 

1. Normalization 
2. Scaling 
3. Custom filter function supplied by the user 

 
Additionally, if prompted the data can be filtered by employing the near zero variance filter and the 
highly correlated features filter, which exclude independent variables when their variance is less than 
0.05 or their pairwise correlation is higher than 0.9. The latter default value can be adjusted to user 
needs. 
  

APPLICATIONS 

This section includes results from the application of RRegrs function to protein corona data (Walkey et 
al., 2014) and metal oxides (MeOx) data (Gajewicz et al. 2014, Puzyn et al.2011), as they were 
introduced in deliverables D4.1, D4.2. Further details are presented in (Tsiliki et al., 2015) which is 
currently under review. For the protein corona data, we present results on the initial set of 129 x 84 
proteins to gold NPs data (21 neutral NPs were excluded from analysis as in Walkey et al.), and also on a 
set of 76x84 proteins to gold NPs data. These 76 proteins are selected from the authors with VIP≥0.6 
threshold. For the MeOx data, we present results on the initial set of 32 parameters to the eighteen 
metal oxides. Because of the restricted number of samples and descriptors, RRegrs was applied without 
filtering options in this case, whereas the best model was selected between those that perform feature 
selection, i.e. GLM, LASSO, SVM-RFE, RF-RFE and ENET.  
 
RRegrs was applied to 10 random splits of the data (75% train and 25% test) along with 10 Y 
randomization runs for the best model. Protein corona data were normalized and filtered using the 
RRegrs near zero variance and correlation filters, for that reason the 129 proteins are filtered to be 99 
and the 76 proteins data set are reduced to 60 features. For metal oxides, data were normalized as in 
(Gajewicz et al. 2014). Table 1 shows the best model selected by RRegrs, its number of features, the 
adj.R2 and the R2 and RMSE values for the train and test sets, averaged over 10 random splits of the 
data. Table 2 shows the best model found in all data splits, i.e. we compare all methodologies and data 
splits to find the best R2 test.  

http://cran.r-project.org/web/packages/doMC/index.html
http://cran.r-project.org/web/packages/doMC/index.html
http://cran.r-project.org/web/packages/doSNOW/index.html
http://cran.r-project.org/web/packages/foreach/index.html
http://cran.r-project.org/web/packages/foreach/index.html


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 46 of 50 

 

 
It can be observed from Table 2 that the highest value reported for protein corona data was R2

test = 
0.844 for individual split nine of the data set. For the data set with 129 proteins, the best model is an 
SVRM model with R2

test = 0.631. When we study the set with 76 proteins, we find that the best model is 
an SVRM with averaged R2

test = 0.728, whereas the best individual split value is R2
test = 0.89. The 

corresponding RRegrs results for the PLS model are R2
test = 0.7 (averaged over 10 data splits), whereas 

the highest values are reported for individual split five R2
test = 0.885 (for repeated CV) and R2

test= 0.873 
(for LOO). Although the last number cannot be directly compared to R2

LOO = 0.81 reported by the 
authors, it gives an indication of how our PLS implementation performs for the specific data set. 
 
For MeOx data, the best performance model and the best averaged model is ENET, keeping on average 
8.8 variables from the data including the two important variables (ΔHc

f , χc) selected in the original 
publication. The ENET averaged statistics for 10 splits of the data are R2

test = 0.746, R2
CV = 0.933, which 

are very similar to the values reported by the authors. The best individual split value is equal to R2
test = 

0.998 for ENET model with eight variables including the final two suggested by the authors (LOO at the 
eighth split of the data). 
 

Data set Best 
model 

Features 
no 

adj.R2 R2
CV R2

test RMSECV RMSEtest 

Protein 
corona 
(129x84) 

SVRM 99 1.02 0.687 0.631 0.558 0.612 

Protein 
corona 
(76x84) 

SVRM 60 0.582 0.777 0.728 0.477 0.538 

MeOX ENET 8.8 >>1 0.933 0.746 0.639 0.639 

Table 1: RRegrs averaged statistics reported for the three use cases, under the 10-fold repeated CV 
scheme. Averaged values are reported across the 10 different data splits. 

 

Data set Best 
model 

Data 
split 

Fea
tur
es 
no 

Validati
on type 

adj.R2 R2
CV/LOO R2

test RMSECV/LOO RMSEtest 

Protein 
corona 
(129x84) 

SVRM 5 99 LOO, 
CV 

1.03 0.644/0.61 0.844 0.618/0.643 0.357 

Protein 
corona 
(76x84) 

SVRM 5 60 LOO, 
CV 

0.407 0.767/0.741 0.89 0.525/0.527 0.296 

MeOX ENET 8 8 LOO 0.808 0.7 0.998 0.588 0.246 

Table 2: RRegrs best model statistics. Both LOO and CV values are considered. 

 
 



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 47 of 50 

 

 

6. CONCLUSION 
In this report we have described the infrastructure that has been developed for eNanoMapper nQSAR 
modelling purposes. The modifications and extensions to the API of the JQ web services have been 
detailed and the ease of incorporation of new machine learning algorithms in the framework has been 
emphasized. The modelling workflow for eNanoMapper users was presented using the Swagger 
interface, from experimental data bundle to a dataset and from there to building models and making 
predictions. Moreover, the array of modelling algorithms that have been made available from R, Python 
and WEKA has been presented. Lastly, the modelling infrastructure is complemented by the capabilities 
of RRegrs, a tool that aids users in model selection by scanning through a wide spectrum of options. A 
tutorial for RRegrs has been compiled and will be made available at the eNanoMapper website.



 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 48 of 50 

 

 

7. BIBLIOGRAPHY 
1. Abraham, G.; Kowalczyk, A.; Loi, S.; Haviv, I.; Zobel, J. Prediction of breast cancer prognosis using gene set 

statistics provides signature stability and biological context. BMC Bioinformatics 2010, 11, 277 DOI: 
10.1186/1471-2105-11-277.  

2. Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image processing with imageJ. Biophotonics International, 2004, 
11, 36–41. 

3. Aggarwal, C. C.; Gates, S. C.; Yu, P. S. On the merits of building categorization systems by supervised clustering. 
Proc. fifth ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’99 1999, 352–356 DOI: 
10.1145/312129.312279. 

4. Atkinson, A.C.; Donev, A.N. Optimum experimental designs. Clarendon Press, 1992; p. 328. 
5. Balbin, O. A.; Prensner, J. R.; Sahu, A.; Yocum, A.; Shankar, S.; Malik, R.; Fermin, D.; Dhanasekaran, S. M.; 

Chandler, B.; Thomas, D.; et al. Reconstructing targetable pathways in lung cancer by integrating diverse omics 
data. Nat. Commun. 2013, 4, 2617 DOI: 10.1038/ncomms3617. 

6. Bansal, N.; Blum, A.; Chawla, S. Correlation Clustering. Mach. Learn. 2004, 56, 89–113 DOI: 
10.1023/B:MACH.0000033116.57574.95. 

7. Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Similarity searching of chemical databases using atom 
environment descriptors (MOLPRINT 2D): Evaluation of performance. J. Chem. Inf. Comput. Sci. 2004, 44, 
1708–1718 DOI: 10.1021/ci0498719. 

8. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32 DOI: 10.1023/A:1010933404324. 
9. Brown, I. D.; McMahon, B. CIF: The computer language of crystallography. Acta Crystallogr. Sect. B Struct. Sci. 

2002, 58, 317–324 DOI: 10.1107/S0108768102003464.  
10. Burello, E.; Worth, A. P. A theoretical framework for predicting the oxidative stress potential of oxide 

nanoparticles. Nanotoxicology, 2011, 5, 228–235 DOI: 10.3109/17435390.2010.502980. 
11. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 

2, 27:1–27:27 DOI: 10.1145/1961189.1961199. 
12. Cheng, Y.; Church, G. M. Biclustering of expression data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2000, 8, 93–103. 
13. Chin, L.; Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 2008, 452, 553–

563 DOI: 10.1038/nature06914.   
14. Fedorov, V. V. Theory of optimal experiments; Elsevier Science, 1972; p. 306. 
15. Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S. Y.; Mumper, R. J.; Tropsha, A. Quantitative 

nanostructure-activity relationship modelling. ACS Nano, 2010, 4, 5703–5712 DOI: 10.1021/nn1013484. 
16. Frank et al, Data mining in bioinformatics using Weka, Bioinformatics 20, 2479-81 (2004) 
17. Free Software Foundation, GNU General Public License https://www.gnu.org/copyleft/gpl.html (accessed Nov 

1, 2014).  
18. Gajewicz, A.; Schaeublin, N.; Rasulev, B.; Hussain, S.; Leszczynska, D.; Puzyn, T.; Leszczynski, J. Towards 

understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR 
studies. Nanotoxicology 2014, 5390, 1–13 DOI: 10.3109/17435390.2014.930195. 

19. Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; et al. Binding of blood 
proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences, 2011, 
108, 16968–16973 DOI: 10.1073/pnas.1105270108 

20. Guazzelli, A. What is PMML ? Explore the power of predictive analytics and open standards. IBM 
developerWorks. 2010, pp. 1–10 http://www.ibm.com/developerworks/library/ba-ind-PMML1/ba-ind-
PMML1-pdf.pdf (accessed Oct 31, 2014). 

21. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H. The WEKA Data Mining Software: 
An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18 DOI: 10.1145/1656274.1656278. 

22. Hardy, B.; Douglas, N.; Helma, C.; Rautenberg, M.; Jeliazkova, N.; Jeliazkov, V.; Nikolova, I.; Benigni, R.; 
Tcheremenskaia, O.; Kramer, S.; et al. Collaborative development of predictive toxicology applications. J. 
Cheminform. 2010, 2 DOI: 10.1186/1758-2946-2-7. 

23.  Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning data mining, inference, and 
prediction; 2009; p. 745 S. 

http://www.ibm.com/developerworks/library/ba-ind-PMML1/ba-ind-PMML1-pdf.pdf
http://www.ibm.com/developerworks/library/ba-ind-PMML1/ba-ind-PMML1-pdf.pdf


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 49 of 50 

 

24. Indahl, U. G.; Liland, K. H.; Næs, T. Canonical partial least squares-a unified PLS approach to classification and 
regression problems. J. Chemom. 2009, 23, 495–504 DOI: 10.1002/cem.1243. 

25. Jamal et al, Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania 
mexicana, BMC Bioinformatics 14, 329 (2013) 

26. Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicability domain estimation by projection of the 
training set in descriptor space: A review. ATLA Alternatives to Laboratory Animals, 2005, 33, 445–459. 

27. Kapralov, A. A.; Feng, W. H.; Amoscato, A. A.; Yanamala, N.; Balasubramanian, K.; Winnica, D. E.; Kisin, E. R.; 
Kotchey, G. P.; Gou, P.; Sparvero, L. J.; et al. Adsorption of surfactant lipids by single-walled carbon nanotubes 
in mouse lung upon pharyngeal aspiration. ACS Nano, 2012, 6, 4147–4156 DOI: 10.1021/nn300626q. 

28. Kaufman, L.; Rousseeuw, P. J. Finding Groups in Data: an Introduction to Cluster Analysis; John Wiley and Sons, 
1990; p. 342; DOI: 10.1002/9780470316801. 

29. Kim, D.; Joung, J.-G.; Sohn, K.-A.; Shin, H.; Park, Y. R.; Ritchie, M. D.; Kim, J. H. Knowledge boosting: a graph-
based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome 
prediction. J. Am. Med. Inform. Assoc. 2014, 1–10 DOI: 10.1136/amiajnl-2013-002481.   

30. KNIME. KNIME and R, The best of two worlds. 2013 https://www.knime.org/files/kos-
13/interactive_r_integration.pdf (Accessed Jun 30, 2015). 

31. Kurczab et al, The influence of negative training set size on machine learning-based virtual screening, J 
Cheminform 6, 32 (2014) 

32. Lazzeroni, L., Owen, A. Plaid models for gene expression data 
http://statweb.stanford.edu/~owen/reports/plaid.pdf (accessed Nov 27, 2014).  

33. Lesniak, A.; Fenaroli, F.; Monopoli, M. P.; Åberg, C.; Dawson, K. A.; Salvati, A. Effects of the presence or 
absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6, 5845–5857 
DOI: 10.1021/nn300223w. 

34. Malkiewicz, K.; Pettitt, M.; Dawson, K. A.; Hansson, S. O.; Lynch, I.; Lead, J. Nanomaterials in reach. Toxicol. 
Lett., 2011, 205 Supplement, S45 – DOI: http://dx.doi.org/10.1016/j.toxlet.2011.05.179. 

35. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K. A. Physical-
Chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. 
Chem. Soc., 2011, 133, 2525–2534 DOI: 10.1021/ja107583h. 

36. Netzeva, T. I.; Worth, A. P.; Aldenberg, T.; Benigni, R.; Cronin, M. T. D.; Gramatica, P.; Jaworska, J. S.; Kahn, S.; 
Klopman, G.; Marchant, C. A.; et al. Current status of methods for defining the applicability domain of 
(quantitative) structure-activity relationships. ATLA Alternatives to Laboratory Animals, 2005, 33, 155–173. 

37. O’Boyle, N. M.; Morley, C.; Hutchison, G. R. Pybel: a Python wrapper for the OpenBabel cheminformatics 
toolkit. Chem. Cent. J. 2008, 2, 5 DOI: 10.1186/1752-153X-2-5. 

38. Ooms, J. The OpenCPU System : Towards a Universal Interface for Scientific Computing through Separation of 
Concerns. arXiv 2014, 1–23.   

39. Ooms, J. The RAppArmor Package : Enforcing Security Policies in R Using Dynamic Sandboxing on Linux. J. Stat. 
Softw. 2013, 55. 

40. Pechter, R. What’s PMML and what's new in PMML 4.0? ACM SIGKDD Explorations Newsletter, 2009, 11, 19.  
41. Periwal et al, Predictive models for anti-tubercular molecules using machine learning on high-throughput 

biological screening datasets, BMC Res Notes 4, 204 (2011)  
42. Piatetsky, G. R leads RapidMiner, Python catches up, Big Data tools grow, Spark ignites. 2015 

http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html (Accessed Jun 30, 2015). 
43. Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T. P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.; 

Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. 
Nature nanotechnology, 2011, 6, 175–178.  

44. R Development Core Team. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. R Found. Stat. 
Comput. Vienna, Austria. 2012. 

45. Roduner, E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592 DOI: 
10.1039/b502142c. 

46. Rorabacher, D. B. Statistical Treatment for Rejection of Deviant Values : Critical Values of Dixon ’ s “ Q ” 
Parameter and Related Subrange Ratios at the 95 % Confidence Level. Anal. Chem. 1991, 139–146 DOI: 
10.1021/ac00002a010. 

47. RStudio. RStudio: Integrated development environment for R. The Journal of Wildlife Management, 2012, 75.   

https://www.knime.org/files/kos-13/interactive_r_integration.pdf
https://www.knime.org/files/kos-13/interactive_r_integration.pdf
http://dx.doi.org/10.1016/j.toxlet.2011.05.179
http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html
http://www.r-project.org/


 

eNanoMapper 604134 14 August 2015 DELIVERABLE 
REPORT D4.3 

Page 50 of 50 

 

48. Saber Hussain, Christin Grabinski, Nicole Schaeublin, Elizabeth Maurer, Mohan Sankaran, Ravindra Pandey, 
Jerzy Leszczynski, W. T. Toxicity Evaluation of Engineered Nanomaterials: Risk Evaluation Tools (Phase 3 
Studies); 2012; pp. 1–55.  

49. Sarimveis, H.; Alexandridis, A.; Bafas, G. A fast training algorithm for RBF networks based on subtractive 
clustering. Neurocomputing 2003, 51, 501–505 DOI: 10.1016/S0925-2312(03)00342-4. 

50. Sass, S.; Buettner, F.; Mueller, N. S.; Theis, F. J. A modular framework for gene set analysis integrating 
multilevel omics data. Nucleic Acids Res. 2013, 41, 9622–9633 DOI: 10.1093/nar/gkt752.  

51. Scott, D.W. On optimal and data-based histograms, Biometrika 66, 605-10 (1979)  
52. Smith, D. R is Hot Revolution Analytics. 2014 http://www.revolutionanalytics.com/whitepaper/r-hot (Accessed 

Nov 27, 2014). 
53. Smith, D. R Is Still Hot–and Getting Hotter. 2015 http://www.revolutionanalytics.com/sites/default/files/r-is-

still-hot.pdf (Accessed Jun 30, 2015). 
54. Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Wilighagen, E. Recent Developments of the Chemistry 

Development Kit (CDK) - An Open-Source Java Library for Chemo- and Bioinformatics. Curr. Pharm. Des. 2006, 
12, 2111–2120 DOI: 10.2174/138161206777585274. 

55. Stewart, J. J. P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided. Mol. Des. 1990, 4, 1–
103 DOI: 10.1007/BF00128336. 

56. Subramanian, A.; Subramanian, A.; Tamayo, P.; Tamayo, P.; Mootha, V. K.; Mootha, V. K.; Mukherjee, S.; 
Mukherjee, S.; Ebert, B. L.; Ebert, B. L.; et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15545–15550 DOI: 
10.1073/pnas.0506580102.   

57. Svetnik, V.; Liaw, A.; Tong, C.; Wang, T. Application of Breiman’s random forest to modelling structure-activity 
relationships of pharmaceutical molecules. Mult. Classif. Syst. 2004, 334–343 DOI: 10.1007/978-3-540-25966-
4_33.  

58. Tcheremenskaia, O.; Benigni, R.; Nikolova, I.; Jeliazkova, N.; Escher, S. E.; Batke, M.; Baier, T.; Poroikov, V.; 
Lagunin, A.; Rautenberg, M.; et al. OpenTox predictive toxicology framework: toxicological ontology and 
semantic media wiki-based OpenToxipedia. J. Biomed. Semantics 2012, 3 Suppl 1, S7 DOI: 10.1186/2041-1480-
3-S1-S7. 

59. Tibshirani, R. Regression Selection and Shrinkage via the Lasso. Journal of the Royal Statistical Society B, 1996, 
58, 267–288.  

60. Truszkowski et al, New developments on the cheminformatics open workflow environment CDK-Taverna, J 
Cheminform 3, 54 (2011) 

61. Tsiliki, G.; Munteanu, C.R.; Seoane, J.A.; Fernandez-Lozano, C.; Sarimveis, H.; Willighagen, E.L. RRegrs: An R 
package for Computer-aided Model Selection with Multiple Regression Models, Under review in Journal of 
Cheminformatics. 

62. Walkey, C. D.; Olsen, J. B.; Song, F.; Liu, R.; Guo, H.; Olsen, D. W. H.; Cohen, Y.; Emili, A.; Chan, W. C. W. Protein 
corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014, 8, 
2439–2455 DOI: 10.1021/nn406018q.  

63. Winkler, D. a; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M. J. Applying quantitative 
structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology, 
2013, 313, 15–23 DOI: 10.1016/j.tox.2012.11.005. 

64. Yang, X.; Regan, K.; Huang, Y.; Zhang, Q.; Li, J.; Seiwert, T. Y.; Cohen, E. E. W.; Xing, H. R.; Lussier, Y. A. Single 
sample expression-anchored mechanisms predict survival in head and neck cancer. PLoS Comput. Biol. 2012, 8 
DOI: 10.1371/journal.pcbi.1002350.   

65. Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–
320. 

 

http://www.revolutionanalytics.com/sites/default/files/r-is-still-hot.pdf
http://www.revolutionanalytics.com/sites/default/files/r-is-still-hot.pdf

