
DELIVERABLE REPORT D4.6

Tools for generating QMRF and

QPRF reports

GRANT AGREEMENT: 604134

ACRONYM: eNanoMapper

NAME:

eNanoMapper - A Database and Ontology

Framework for Nanomaterials Design and Safety

Assessment

DELIVERABLE REPORT D4.6

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 2 of 51

PROJECT COORDINATOR: Douglas Connect GmbH

START DATE OF PROJECT; DURATION: 1 February 2014; 36 months

PARTNER(s) RESPONSIBLE

FOR THIS DELIVERABLE:
IST

DATE: 07.11.2016

VERSION: 1.0

Document Type Deliverable Report

WP/Task WP4/T4.6

Document ID
eNanoMapper D4.6 - Tools for generating QMRF and

QPRF reports

Status Final

Partner Organisations

● Douglas Connect, GmbH (DC)

● National Technical University of Athens (NTUA)

● In Silico Toxicology (IST)

● Ideaconsult (IDEA)

● Karolinska Institutet (KI)

● European Bioinformatics Institute (EMBL-EBI)

● Maastricht University (UM)

● Misvik Biology (MB)

FP7-NMP-2013-SMALL-7 Call identifier

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 3 of 51

Authors

G. Drakakis, C. Chomenidis, G. Tsiliki, P. Doganis, E.

Anagnostopoulou, H. Sarimveis, M. Rautenberg, D.

Gebele, C. Helma, N. Jeliazkova, V. Jeliazkov

Review by Barry Hardy (DC)

Purpose of the Document

Το report on Task 4.6 - Updating and extending OpenTox

validation and reporting services, namely the integration of

split-, cross- and external validation schemes and the

generation of QPRF and QMRF reports

Document History Final version: 07.11.2016

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 4 of 51

TABLE OF CONTENTS
1. EXECUTIVE SUMMARY .. 8

2. INTRODUCTION ... 9

3. Validation Schemes And Reporting Services .. 10

3.1 Validation Services In The JQ Modelling Framework .. 10

3.1.1 External Validation ... 11

3.1.2 Cross Validation ... 13

3.1.3 Training Set Split Validation ... 17

3.1.4 Validation Reports ... 19

3.2 Validation Services In The Nano-Lazar Modelling Framework ... 22

4. Read Across Training And Predicting Functionalities .. 24

4.1 JQ Read Across SERVICES .. 24

4.1.1 JQ Read Across API ... 24

4.1.2 JQ Read Across Functionalities From The UI .. 26

4.2 Nano-Lazar Read Across SERVICES.. 30

4.2.1 nano-lazar Ruby API ... 30

4.2.2 nano-lazar REST API ... 32

4.2.3 nano-lazar GUI ... 32

5. QPRF Reporting Services ... 35

5.1 QPRF Reports In The JQ Modelling Framework .. 35

5.2 QPRF Reports In Nano-Lazar ... 38

6. QMRF Reporting Services ... 39

6.1 Ruby QSAR report library .. 39

6.2 QMRF report in nano-lazar ... 39

6.3 QMRF Editor 3.0.0 ... 42

7. CONCLUSION ... 48

BIBLIOGRAPHY .. 49

Appendix ... 50

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 5 of 51

TABLE OF FIGURES
Figure 1: Validation options for JQ’s API ... 10

Figure 2: JQ External Validation API .. 11

Figure 3: Select model for external validation .. 12

Figure 4: Select dataset for external validation .. 12

Figure 5: JQ Cross validation API ... 14

Figure 6: Select dataset for cross validation screen ... 15

Figure 7: Select algorithm for cross validation screenshot ... 15

Figure 8: Screenshot of additional algorithm parameters (folds, stratify and seed) for cross validation .. 16

Figure 9: JQ Training set split validation API ... 18

Figure 10: Algorithm options for training set split validation ... 19

Figure 11: JQ GET Report by ID API ... 20

Figure 12: Validation Performance metrics and predictions .. 21

Figure 13: Plots contained within validation report ... 21

Figure 14: Three independent cross validation results in the GUI ... 23

Figure 15: Downloaded QMRF report from nano-lazar GUI ... 23

Figure 16: JQ Read Across training a model using JQ POST algorithm by ID API .. 25

Figure 17: JQ’s POST model by ID for making read across predictions .. 26

Figure 18: Options available to the user for training a model using the read across algorithm 27

Figure 19: Insert values example of JQ read across prediction functionality ... 28

Figure 20: Select dataset example of JQ read across prediction functionality ... 28

Figure 21: Predictions derived by JQ read across algorithm, along with the prediction confidence level

between 0 and 1 (the closer to 1 the more confidence in the prediction). ... 29

Figure 22: Predict a compound or nanoparticle ... 32

Figure 23: Summary of crossvalidation results ... 33

Figure 24: nano-lazar prediction. .. 34

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 6 of 51

Figure 25: Produce QPRF report using JQ’s POST Dataset ID QPRF API ... 35

Figure 26: Prediction screen containing QPRF report for each nanoparticle (Gajewicz et al. dataset, 8

MeOX NPs for predicting HaCaT toxicity). .. 36

Figure 27: Top section of report shown in JQ UI. It can be seen all fields are editable. 37

Figure 28: Screenshot of fields available in JQ QPRF report service viewed via the UI 37

Figure 29: QMRF report integration in the nano-lazar toxicity prediction web application 40

Figure 30: Getting QMRF report from nano-lazar API .. 41

Figure 31: QMRF Editor 3.0.0 .. 42

Figure 32: QMRF Editor 3.0.0 Defining the endpoint (1) .. 43

Figure 33: QMRF Editor 3.0.0 Defining the algorithm .. 44

Figure 34: QMRF Editor 3.0.0 Internal validation ... 45

Figure 35: QMRF Editor 3.0.0 Endpoints... 46

Figure 36: QMRF Editor 3.0.0 Defining the endpoint (2) .. 47

Figure 37: Screenshot of Jaqpot API found at http://test.jaqpot.org:8080/jaqpot/swagger/ 51

Figure 38: Screenshot of Jaqpot UI found at http://test.jaqpot.org:8000/ .. 51

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 7 of 51

GLOSSARY
Abbreviation / acronym Description

JQ JaqPot Quattro

UI User Interface

RA Read Across

QSAR Quantitative Structure-Activity Relationship

nQSAR nano-QSAR

eNM eNanoMapper

API Application Programming Interface

CV Cross Validation

QPRF QSAR Prediction Reporting Format

QMRF QSAR Model Reporting Format

DoA Domain of applicability

CL Confidence Level

LAZAR Lazy Structure-Activity Relationships

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 8 of 51

1. EXECUTIVE SUMMARY

Scientific reports carry significant importance for the straightforward and effective transfer of

knowledge, results and ideas. Good practice dictates that reports should be well-structured and concise.

This deliverable describes the reporting services for models, predictions and validation tasks that have

been integrated within the eNanoMapper (eNM) modelling infrastructure.

Validation services have been added to the Jaqpot Quattro (JQ) modelling platform and the nano-lazar

read-across framework developed within WP4 to support eNM modelling activities. Moreover, we have

proceeded with the development of reporting services for predictions and models, respectively QPRF

and QMRF reports.

Therefore, in this deliverable, we first describe the three validation schemes created, namely training

set split, cross- and external validation in detail and demonstrate their functionality both on API and UI

levels. We then proceed with the description of the read across functionalities and finally, we present

and describe the QPRF and QMRF reporting services.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 9 of 51

2. INTRODUCTION

Deliverable 4.6 describes the functionalities and tools that have been developed during the

eNanoMapper (eNM) project for validating the statistical and machine learning (ML) algorithms and

reporting on the predictions and the models themselves.

Section 3 of this report describes the validation schemes and the respective reporting services made

available by JQ and nano-lazar modelling frameworks for both regression and classification algorithms,

which compute and provide statistics such as R-squared, R^2 Adjusted, RMSD, F-Value, Standard Error,

Accuracy, Precision, Recall, F1-score, Jaccard index, as well as informative figures, wherever applicable.

Section 4 presents the read across methods and services which have been developed and integrated in

the nano-lazar and JQ frameworks for filling data gaps and for complementing QSAR modelling tools.

Sections 5 and 6 describe the development of services for the automatic creation of QPRF and QMRF

reports respectively, according to OECD guidelines. JQ and nano-lazar reporting services are presented,

where QMRF or QPRF fields are automatically filled in, when the appropriate entries are present in the

database (https://data.enanomapper.net), but are also fully editable for allowing users to fill in missing

information or add descriptions. Section 6 also presents the QMRF Editor 3.0.0, which is a standalone

Java application with user friendly installation, uses the eNM ontology and can be used independently

to compile QMRF reports for any model.

Full demonstrations of the above processes are provided in this deliverable, with the help of the

Swagger API documentation and/or the user interfaces that provide visualization of the web service

functionalities.

These additions may be considered as extensions to the OpenTox algorithm and modelling API.

https://data.enanomapper.net/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 10 of 51

3. VALIDATION SCHEMES AND REPORTING

SERVICES

3.1 VALIDATION SERVICES IN THE JQ MODELLING FRAMEWORK

Validation schemes have been added to the JQ functionalities in order to provide users with the

opportunity to evaluate the accuracy and robustness of their models. In this service, JQ provides

information on the algorithm type, number of variables used and accuracy metrics depending on the

type of algorithm. Two types of algorithms are complemented by validation services in JQ, namely

classification and regression algorithms. For classification, the metrics provided are Accuracy, Precision,

Recall, F1-score and Jaccard index. For regression, the service provides R-square, R^2 Adjusted (if

applicable), RMSD, F-Value, Standard Error. In both cases the full list of predictions is provided. Finally,

several figures are created: confusion matrix (for classification), real vs. predicted and QQ plot (for

regression).

In the validation API users may submit datasets and models for validation using three POST methods.

The available options are cross validation (stratified or random), training set split and external

validation, as shown in Figure 1 found at http://test.jaqpot.org:8080/jaqpot/swagger/. All validation

methods use the Task system in their execution. The result of the task will always be a Report

document.

Figure 1: Validation options for JQ’s API

http://test.jaqpot.org:8080/jaqpot/swagger/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 11 of 51

3.1.1 EXTERNAL VALIDATION

The Swagger documentation of the JQ external validation API is shown in Figure 2. A user must have

already built or located an existing predictive model and have created a test set with the same variables

as the training set. The following parameters should be supplied to the external validation POST

method:

1) Model URI: This is the URI of the model to be used for making the prediction and therefore

validation. It may be retrieved using the API by GET-ing all models visible by the user, or

selected from those already in JQ, by GET-ing the list of featured models in text/csv format. A

model can be further viewed by GET-ing the model by its ID.

2) Dataset URI: URI of the dataset on which to perform the external validation. Users must make

sure the dataset used is compatible with the model, i.e. shares attributes with the training set

used to build the model.

A task is then created which can be monitored via its ID using the GET task by ID API. Once completed, a

report can be viewed in JSON format.

Figure 2: JQ External Validation API

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 12 of 51

From the JQ user interface, this process is carried out in a rather straightforward manner, by first

selecting a model already created (Figure 3) and then an external dataset (Figure 4) on which to perform

the predictions and subsequently validate the model. Once the task is completed, the user may view the

results in the form of a report, which contains the model predictions and various performance metrics,

as well as informative plots such as QQ Plot.

Figure 3: Select model for external validation

Figure 4: Select dataset for external validation

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 13 of 51

For the external validation example we used the following model

http://test.jaqpot.org:8000/m_detail?name=gaj-10-lr, and the example dataset

http://test.jaqpot.org:8000/data_detail?name=xbR5AMG1rOBc as the test set. The model has been

built using the R linear regression algorithm http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-

lm on the training set suggested in Gajewicz et al. (10 of 18 published MeOX nanoparticles for predicting

HaCaT toxicity, whilst the remaining instances were used as the test set). Two input variables were

selected, namely Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide

nanocluster DHcf, whilst the endpoint is described by logLC50. The produced report is provided in the

following link: http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp. The report can be

downloaded as a PDF file.

3.1.2 CROSS VALIDATION

The Swagger documentation of the JQ cross validation API is shown in Figure 5. Users may choose to

cross validate an existing algorithm on a particular data set before building the final model. In this case,

options need to be provided for all data splits, including scaling or PMML transformations. Furthermore,

the dataset, prediction feature and the modelling algorithm need to be provided, including potential

algorithm tuning parameters if any (i.e. PLS with VIP scores requires the number of latent variables to be

provided to the algorithm). Finally, the user may choose stratified or random cross validation, for which

he/she will need to provide a random seed, as with commercial machine learning software applications.

Please note that number of folds must be an integer and less than or equal to the number of instances.

This option is only available through the API, as the number of folds is selected from a drop-down list in

the UI.

http://test.jaqpot.org:8000/m_detail?name=gaj-10-lr
http://test.jaqpot.org:8000/data_detail?name=xbR5AMG1rOBc
http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm
http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm
http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 14 of 51

Figure 5: JQ Cross validation API

Performing a cross validation with the UI, requires the selection of a dataset, algorithm and parameters.

A Dataset may be selected either from the example datasets or the list of datasets visible to the user, as

shown in Figure 6. In this example, we selected the same dataset discussed above, specifically from

Gajewicz et al, comprising 10 MeOX nanoparticles described by 29 properties (found at

http://test.jaqpot.org:8000/data_detail?name=E20vuMNNTHsp).

http://test.jaqpot.org:8000/data_detail?name=E20vuMNNTHsp

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 15 of 51

Figure 6: Select dataset for cross validation screen

On the next screen, an appropriate algorithm should be chosen from the regression or classification list.

For this example, we have chosen the first option available, namely the R language Linear Regression

(http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm). This is shown In Figure 7.

Figure 7: Select algorithm for cross validation screenshot

http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 16 of 51

Finally, the validation parameters need to be set. This screen is almost identical to the “Train a model”

screen (see Deliverable 4.3). Apart from the endpoint selection and data scaling normalisation, the user

now has two additional options to specify, the number of folds and whether the training dataset in each

fold should be stratified (normal), random (user provides a seed for random function) or split based on

the observed order of data instances (None). A screenshot of this section is shown in Figure 8. As

discussed briefly above, users of the JQ UI are offered 3, 5 and 10-fold cross validation options in order

to avoid mistakes (i.e. disproportional number of folds) and also avoid the over-consumption of

resources.

Figure 8: Screenshot of additional algorithm parameters (folds, stratify and seed) for cross

validation

For this example, we followed again the instructions set by Gajewicz et al. and have selected the same

two input variables, Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide

nanocluster DHcf, and logLC50 as the endpoint. Scaling and stratification were both set to “None”. By

clicking on “validate”, we have run a 3-fold (default) cross validation on the specified dataset using

linear regression for the current example. Once completed, users may view the resulting report by

clicking on “See result”. This is located at:

 http://test.jaqpot.org:8000/report?name=eJnCCdzAwNCvh2x

http://www.enanomapper.net/deliverables/d4/150801_eNanoMapper-D4_3final.pdf
http://test.jaqpot.org:8000/report?name=eJnCCdzAwNCvh2x

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 17 of 51

3.1.3 TRAINING SET SPLIT VALIDATION

The last option available in the validation API is to validate an existing algorithm by splitting a dataset

into training and test sets on a specified ratio. The Swagger documentation of the JQ training set split

validation API is shown in Figure 9. As in the cross validation case, transformations and scaling need to

be provided if required, as well as the algorithm and prediction feature. More specifically, users must

provide the following options: algorithm URI, training dataset URI, algorithm parameters (if applicable),

prediction feature (usually biological endpoint), PMML transformations (optional), scaling (normalize or

scale between 0 and 1; optional), ratio (training to test set split; between 0 and 1) and stratify (optional;

‘normal’, ‘none’ or ‘random’). Option ‘None’ splits the data sequentially, ‘normal’ adds stratification, for

‘random’ users must provide a seed).

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 18 of 51

Figure 9: JQ Training set split validation API

Users of JQ through the user interface must select a dataset and algorithm as described above in detail.

The only additional option for the algorithm is the “Select Split Ratio” field, which should be a value

larger than zero and smaller than one, which describes the training-to-test-set-ratio to the algorithm.

Therefore 0.7 would suggest that 70% of instances will be used for training and 30% will be held out for

testing/validation. This is shown in Figure 10. The “Stratify” drop down menu is still available for the

different instance selection options. The resulting report can be viewed once the task is completed.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 19 of 51

Figure 10: Algorithm options for training set split validation

Using the same dataset (Gajewicz et al., 10 MeOX NPs, found at

http://test.jaqpot.org:8000/d_validate?dataset=E20vuMNNTHsp) and algorithm (JQ’s R linear

regression implementation) as the example above, we demonstrate the training set split validation.

Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide nanocluster DHcf

were selected again as input variables and logLC50 as the endpoint, according to Gajewicz et al. The split

ratio was set to 0.7 (see Figure 10), whilst scaling and stratification were both set to “None”. The

resulting split validation report can be found at:

http://test.jaqpot.org:8000/report?name=BS4vJNc72Qomsea.

3.1.4 VALIDATION REPORTS

In order to view a validation report using the API, users must paste the report ID generated from one of

the validation services in the “ID” field, as demonstrated in Figure 11. This process is the same for any

type of validation scheme. The API then returns the report in JSON format in the response body, which

contains single calculations, array calculations and figures. Single calculations are metrics such as R^2,

standard error etc., array calculations contain the real and predicted values for comparison, and figures

contain plots such as a QQ plot.

http://test.jaqpot.org:8000/d_validate?dataset=E20vuMNNTHsp
http://test.jaqpot.org:8000/report?name=BS4vJNc72Qomsea

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 20 of 51

Figure 11: JQ GET Report by ID API

On the UI level, users may view the report directly after a validation task is completed, as well as under

“My Resources”. As mentioned above, these reports contain single calculations and array calculations

(demonstrated in Figure 12), as well as images (shown in Figure 13) and can be downloaded as PDF files.

Figure 13 present metrics and plots corresponding to the case study presented in section 3.1.1.

(http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp).

http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 21 of 51

Figure 12: Validation Performance metrics and predictions

Figure 13: Plots contained within validation report

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 22 of 51

3.2 VALIDATION SERVICES IN THE NANO-LAZAR MODELLING FRAMEWORK

Within the OpenTox project we have developed and implemented a REST-based validation service that

is applicable to all OpenTox compliant modelling services. This service was updated to reflect the latest

API changes and is available at https://services.in-silico.ch/validation.

Practical experience with large scale validation experiments have shown however that the REST

approach is time consuming, inefficient, error prone and hard to debug, especially during the

development phase. For this reason, validation schemes were tightly integrated into the lazar system,

which led to a significant speedup of validation runtimes and a much-improved tracing of prediction

errors. Based on user feedback applicability domain definitions for classifications were revised. The

slightly unintuitive confidence index was replaced by positive and negative prediction probabilities.

At present lazar supports all major validation schemes for classification and regression including

● external validation

● training-test set splits

● cross validation

● leave-one-out validation

These validations generate the usual validation metrics (e.g. accuracy, sensitivity, specificity, true

positive rate, true negative rate, r^2, RMSE, MAE) and graphical depictions (e.g. correlation plots). Apart

from these standard validation features lazar provides tools specifically for model developers, e.g. the

inspection of individual predictions, sorting of predictions according to prediction errors or the distance

to the applicability domain.

The validation API is documented at http://www.rubydoc.info/gems/lazar. Like the rest of lazar

validations are created on the command line, but lazar provides convenient methods for model building,

that generate prediction models together with a default set of validations (three independent cross

validations and leave-one-out validation) with a single method call. Models and validation results can be

integrated into GUIs (e.g. nano-lazar, https://nano-lazar.in-silico.ch) without any modifications (Figure

14).

https://services.in-silico.ch/validation
http://www.rubydoc.info/gems/lazar
https://nano-lazar.in-silico.ch/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 23 of 51

Figure 14: Three independent cross validation results in the GUI

The lazar QMRF report service (section 7) creates QMRF reports directly from model validations. In

current development versions (https://nano-lazar-dev.in-silico.ch) QMRF and QPRF reports will be

directly available from the nano-lazar GUI (Figure 15).

Figure 15: Downloaded QMRF report from nano-lazar GUI

https://nano-lazar-dev.in-silico.ch/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 24 of 51

4. READ ACROSS TRAINING AND PREDICTING

FUNCTIONALITIES

In this section, we will describe the read across functionality of JQ and nano-lazar, which allows users to

make predictions for a query nanoparticle based on its similarity to nanoparticles used in a training set

in order to build a model.

4.1 JQ READ ACROSS SERVICES

As with all other JQ services described in previous deliverables, read across options can be accessed

both directly on the right-hand side of the main JQ UI page, or under “Actions”. The two options

currently available are “Train” and “Test”. These work similarly to the modelling services described in

Deliverable 4.3. For training a model, users must provide a dataset, a distance metric (currently

available: euclidean, manhattan or ensemble), a distance threshold between zero and one, and whether

they would like to compute a confidence level when making a prediction. For testing, users must simply

select a dataset whose attributes are compatible with those of the dataset used in training for building

the read across model. In the following sections, JQ read across training and testing functionalities will

be explained on both API and UI levels.

4.1.1 JQ READ ACROSS API

The read across functionalities on the API level can be found at

http://test.jaqpot.org:8080/jaqpot/swagger/.

For training a read across model, users may use the POST algorithm by ID API by inserting the algorithm

ID python-read-across. This (and indeed the full list of algorithms) can also be retrieved using the GET

algorithm API. Figure 16 shows a screenshot of the API, which requires several fields to be filled in by

the user. These comprise the model title and description, a dataset URI and the endpoint variable

(prediction feature) URI, as well as whether transformations or scaling/normalisation are appropriate.

The algorithm ID should be set to “python-read-across” and three parameters must be supplied in

dictionary format, namely “distance”, “threshold” and “confidence”. Specifically:

● Distance: “euclidean”, “manhattan” or “ensemble”

http://test.jaqpot.org:8080/jaqpot/swagger/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 25 of 51

● Threshold: any number between 0 and 1

● Confidence 0 (no) or 1 (yes) depending on whether confidence levels should be calculated upon

testing

Therefore, the parameters dictionary (see previous deliverables) is along the lines of:

{"confidence": 1, "distance": "ensemble", "threshold": 0.1}

Figure 16: JQ Read Across training a model using JQ POST algorithm by ID API

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 26 of 51

Making a prediction using the read across method is identical to all QSAR testing methods available in

JQ. Users must provide a compatible dataset to the training set and the ID of the model built to the

POST model by ID API found under model on the JQ swagger page. This is shown in Figure 17. The

resulting predictions are demonstrated via the UI later in this deliverable, as it was deemed to be

preferable for the reader due to friendly visualisation.

Figure 17: JQ’s POST model by ID for making read across predictions

4.1.2 JQ READ ACROSS FUNCTIONALITIES FROM THE UI

In this section, we will demonstrate the read across functionalities of JQ on the UI level. These can be

found on the main screen (bottom right; “Read Across” train/test) or under the “actions” menu. As with

regular modelling services, read across allows users to create a model in order to be later used to make

a prediction based on similarity during the testing process.

Since the algorithm had already been selected (user chooses read across prediction), this first requires

the choice of a dataset on which to build the model. In the next screen users, may parameterise the

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 27 of 51

algorithm, by selecting a distance metric between ‘euclidean’, ‘manhattan’ and ‘ensemble’ and a

threshold between 0 and 1 (the closest to 0 the strictest) which will be used to assess nanoparticle

similarity. As with the other modelling services, users must provide a model name and description, as

well as select variables and endpoint. Finally, users may select a method to calculate the prediction

confidence level. Currently, the only option available is “Nearest Neighbour Confidence” (or “None”).

This is demonstrated in Figure 18.

Figure 18: Options available to the user for training a model using the read across algorithm

By clicking on “Train”, a task is created. Users may monitor this task. When it is completed, an option

“See result” appears under “Task Completed”. By clicking on “See result”, the user may view the model

details, such as the description, the algorithm used to create it, the dependent/independent/etc.

features, and three options: predict, validate and delete. The model can be retrieved at any time under

the “My resources” tab.

For this example, the dataset used for building the model comprises 56 gold NPs described by 25

physicochemical descriptors and the endpoint to be predicted is the log2 transformed Net Cell

Association. This dataset is taken from Walkey et al. and can be found under JQ’s example datasets

(http://test.jaqpot.org:8000/data_detail?name=ghh9Usgiv2ZuOjjsaZHA). Manhattan distance was

chosen with a threshold of 0.1 and the confidence value was calculated using “Nearest Neighbour

Confidence”. The resulting model used for this demonstration is found at:

http://test.jaqpot.org:8000/m_detail?name=shWpOGagqSJ5l6PfvkpJ.

http://test.jaqpot.org:8000/data_detail?name=ghh9Usgiv2ZuOjjsaZHA
http://test.jaqpot.org:8000/m_detail?name=shWpOGagqSJ5l6PfvkpJ

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 28 of 51

Read across prediction services are available both on the main screen in the “Read Across” box, as well

as under “Actions”. As with other modelling services, users must first select an already trained model.

Users must then either select a dataset on which read across predictions will be performed or select

“Insert Values”, for which JQ will provide a table to be filled in containing the full list of variables used by

the read across model. Users may add more rows or directly paste a table from a spreadsheet (i.e. from

Microsoft Excel). This is shown in Figure 19. Should users choose to select a dataset, they must ensure

that it is compatible with the model, meaning that the dataset shares the same attributes. Such a

dataset is the test dataset provided by Walkey et al., comprising 28 gold NPs described by 25

physicochemical properties (http://test.jaqpot.org:8000/data_detail?name=yzsAXE5rLPzz). This dataset

is also found in JQ’s example datasets.

Figure 19: Insert values example of JQ read across prediction functionality

Figure 20: Select dataset example of JQ read across prediction functionality

http://test.jaqpot.org:8000/data_detail?name=yzsAXE5rLPzz

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 29 of 51

As described above, once a prediction is completed users may click on “See result”. The screen will

display the nanoparticles in the dataset used for prediction, along with the prediction feature (endpoint)

and, if selected, the confidence value of the prediction. This is demonstrated in Figure 20 for which the

dataset can be found at

http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6Pfvkp

J. The prediction dataset created can be retrieved by the owner at any time under “My resources”.

Figure 21: Predictions derived by JQ read across algorithm, along with the prediction

confidence level between 0 and 1 (the closer to 1 the more confidence in the prediction).

http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6PfvkpJ
http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6PfvkpJ

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 30 of 51

4.2 NANO-LAZAR READ ACROSS SERVICES

4.2.1 NANO-LAZAR RUBY API

Nanoparticle model building, validation and predictions are now fully integrated in the lazar read across

framework. Its primary use is to create and validate read across models in Ruby scripts or in an

interactive Ruby shell. Installation and usage of the lazar framework is quite straightforward:

Installation:

gem install lazar

Mirror eNM database into a local directory:

require 'lazar'

 OpenTox::Import::Enanomapper.mirror enm_data_dir

Create and validate prediction model with default settings:

model = OpenTox::Model::NanoPrediction.from_json_dump

enm_data_dir

This command creates a nano-lazar model and validates it with three independent 10-fold cross

validations.

Inspect cross validations:

model.crossvalidations

Predict a random nanoparticle from the training dataset:

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 31 of 51

query_particle = model.training_dataset.substances.sample

model.predict query_particle

Although lazar has reasonable and tested defaults for different QSAR problems, algorithms and

parameters for similarity calculations and local models can be selected via a simple declarative

interface. In order to create a model with custom algorithms and parameters we would execute for

example:

algorithms = {

 :descriptors => {

 :method => "properties",

 :categories => ["P-CHEM",”Proteomics”]

 },

 :prediction => {:method => 'Algorithm::Caret.pls' },

 }

 model.model = OpenTox::Model::Lazar.create(

 training_dataset: model.training_dataset,

 prediction_feature: model.prediction_feature,

 algorithms: algorithms

)

These commands create local partial least squares (PLS) models with physchem and proteomics

descriptors.

The complete lazar Ruby API is documented at http://www.rubydoc.info/gems/lazar.

Although lazar is primarily designed for command line model development, cross validation results and

nanoparticle predictions and other functions are also accessible from a web GUI (https://nano-lazar.in-

silico.ch) and a REST interface (URI). Both are described in more detail in the following sections.

http://www.rubydoc.info/gems/lazar
https://nano-lazar.in-silico.ch/
https://nano-lazar.in-silico.ch/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 32 of 51

4.2.2 NANO-LAZAR REST API

The nano-lazar Rest API interface provides a Restful web service. It is the web service implementation of

the nano-lazar Ruby API for obtaining information on data in the nano-lazar framework and for

performing predictions and descriptor calculations. The web service is documented with Swagger 2.0

specification. Additionally a Swagger-UI web interface at https://enm.in-silico.ch/swagger/ provides a

possibility to read and operate the API.

Figure 22: Predict a compound or nanoparticle

4.2.3 NANO-LAZAR GUI

The nano-lazar GUI (https://nano-lazar.in-silico.ch/) is tightly integrated with the eNM infrastructure. It

uses data from the eNM data warehouse for model building and eNM ontologies for data annotation

and GUI elements (e.g. description of domain specific terms).

https://enm.in-silico.ch/swagger/
https://nano-lazar.in-silico.ch/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 33 of 51

Figure 22 shows a screenshot of the nano-lazar query page with a summary of cross validation results

and entry forms for nanoparticle properties.

Figure 23: Summary of crossvalidation results

Nano-lazar predictions are depicted on the following screenshot (Figure 23). nano-lazar presents

predictions in tabular form with the query nanoparticle on top followed by similar nanoparticles for the

local QSAR model. Each nanoparticle is characterised by its similarity to the query compound, endpoint

measurements and the properties relevant for the particular endpoint. If the query nanoparticle is part

of the training data (as in this example) all information from this substance is removed from the training

set before making the prediction. In this case the measured value is displayed for comparison purposes.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 34 of 51

Figure 24: nano-lazar prediction.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 35 of 51

5. QPRF REPORTING SERVICES
5.1 QPRF REPORTS IN THE JQ MODELLING FRAMEWORK

QPRF reports may be generated for each ENM after a prediction has been performed. These contain all

fields set by the OECD guidelines [1], namely:

● Substance: Contains information such as CAS and EC numbers, SMILES, InChi, etc.

● General: information such as date and creator name and email.

● Prediction: Biological endpoint, variables, model used, DoA, etc

● Adequacy: Optional field, containing regulatory purpose, conclusion etc.

All fields made available from the dataset, as well as information about the model and the prediction

are added to the report automatically. Should information be missing, what is expected to be filled in is

described by the field. All fields are editable, in order to allow the user to add extra information not

contained in the dataset or model, as well as the optional fields such as conclusion1s. As with all reports,

QPRF reports are downloadable as PDF documents.

The Swagger documentation of the JQ QPRF API is shown in Figure 25. Users must POST the dataset ID

and substance URI (nanoparticle in question) in order to receive the QPRF report. Once the task

generated has been completed, users may view the report using the GET Report by ID API.

Figure 25: Produce QPRF report using JQ’s POST Dataset ID QPRF API

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 36 of 51

In order to receive a QPRF report, a user must have made a prediction (by selecting a model and

dataset; as demonstrated in previous deliverables). Upon clicking on “See result” the prediction dataset

has an extra column on the far right, namely “QPRF Report”, as seen in Figure 25. By clicking on this,

they are redirected to the QPRF report page. The report (as with any other report) may be downloaded

as a PDF. For this demonstration, the report can be viewed using the JQ UI at

http://test.jaqpot.org:8000/report?name=ALZ8LDBrwXrCtsY.

Figure 26: Prediction screen containing QPRF report for each nanoparticle (Gajewicz et al.

dataset, 8 MeOX NPs for predicting HaCaT toxicity).

We reiterate that all entries in the report are editable. This functionality has been added to allow users

to fill in gaps according to their knowledge, should the entries not exist in the database, but also

complete fields such as experiment purpose or conclusion which are not automatically generated. This

can be seen in Figure 27-Figure 28.

http://test.jaqpot.org:8000/report?name=ALZ8LDBrwXrCtsY

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 37 of 51

Figure 27: Top section of report shown in JQ UI. It can be seen all fields are editable.

Figure 28: Screenshot of fields available in JQ QPRF report service viewed via the UI

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 38 of 51

5.2 QPRF REPORTS IN NANO-LAZAR

With the Ruby QSAR reporting library QSAR-report (see 6.1 Ruby QSAR reporting library) it is possible to

produce QPRF reports in ruby applications. The library generates QPRF reports in Version 1.11 in JSON

format. In the upcoming months, until M36 of the project, we will implement the QPRF reporting

feature into nano-lazar. A full documentation of the QPRF library usage is documented at

RubyDocs.org2.

1 EC Joint Research Center: QSAR Prediction Reporting Format (QPRF) (version 1.1, May 2008) https://eurl-

ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/qrf/QPRF_version_1.1.pdf

2 RubyDocs: QSAR-report, Class: OpenTox::QPRFReport

http://www.rubydoc.info/gems/qsar-report/OpenTox/QPRFReport

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 39 of 51

6. QMRF REPORTING SERVICES
6.1 RUBY QSAR REPORT LIBRARY

We have developed a ruby library to produce QMRF and QPRF reports. As for many programming

languages, the Ruby language has a huge variety of libraries and it supports the inclusion of third-party

libraries. These libraries are mostly used in ruby code by so called gems. Gems are ruby library packages

hosted in the public ruby community’s gem hosting service at https://rubygems.org3.

The QSAR-report gem was developed to extend the lazar and nano-lazar toxicity prediction programs

with QMRF and QPRF reporting features. The library gem is independent from lazar or nano-lazar and

can also be used in any other ruby code. The library code is in general public license version 3 (GPLv34) .

The open source code is freely available and versioned at the Github5 code hosting platform.

The library has two main classes OpenTox::QMRFReport and OpenTox::QPRFReport for the report types

QMRF and QPRF. Instances of these classes can be easily filled with contents.

There is a full documentation of the library with examples at RubyDoc.info6 .

For full information on QSAR reporting see: JRC QSAR Model Database and QSAR Model Reporting

Formats https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-

reporting-formats

6.2 QMRF REPORT IN NANO-LAZAR

The QMRF reporting feature is implemented in eNanoMapper’s nano-lazar REST API7 and the Nano-

Lazar toxicity prediction web-application8. REST API operations can be operated in a Swagger based API

3 RubyGems the Ruby community’s gem hosting service - QSAR report gem: https://rubygems.org/gems/qsar-

report/

4 GNU General Public License 3 https://www.gnu.org/licenses/gpl-3.0.en.html

5 Github code hosting platform https://github.com/opentox/qsar-report

6 RubyDoc.info YARD documentation server - QSAR report gem: http://www.rubydoc.info/gems/qsar-report

7 Lazar & Nano-Lazar REST Service API https://enm.in-silico.ch/swagger

8 Nano-lazar toxicity prediction https://nano-lazar.in-silico.ch/predict (current version) https://nano-lazar-dev.in-

silico.ch/predict (development version)

https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-reporting-formats
https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-reporting-formats
https://rubygems.org/gems/qsar-report/
https://rubygems.org/gems/qsar-report/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/opentox/qsar-report
http://www.rubydoc.info/gems/qsar-report
https://enm.in-silico.ch/swagger
https://nano-lazar.in-silico.ch/predict
https://nano-lazar-dev.in-silico.ch/predict
https://nano-lazar-dev.in-silico.ch/predict

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 40 of 51

documentation with a Swagger UI interface. QMRF reports can be generated for each lazar model by

performing a GET request to the specific model.

curl -X GET --header "Accept:application/xml" https://enm.in-

silico.ch/report/57dbdc7b4375ab563b601b3a

curl example

The QMRF report produces QMRF XML in version 1.3. The API generates a first version of the report.

This 'prototype' can be downloaded in XML format. This XML file can be finalized for publication in the

QMRF Editor 2.0 (https://sourceforge.net/projects/qmrf/).

Example code9 and full documentation can be found at RubyDoc.info .

Figure 29: QMRF report integration in the nano-lazar toxicity prediction web application

9 Nano-lazar example code: http://www.rubydoc.info/gems/qsar-report/file/example/example.rb

https://sourceforge.net/projects/qmrf/
http://www.rubydoc.info/gems/qsar-report/file/example/example.rb

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 41 of 51

Figure 30: Getting QMRF report from nano-lazar API

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 42 of 51

6.3 QMRF EDITOR 3.0.0

The QMRF XML schema and the QMRF Editor was originally developed in 2007 on behalf of JRC by

Ideaconsult Ltd. The QMRF Editor 2.0.010 was available for download since 2013. Within the framework

of eNanoMapper, the qmrf.dtd schema was updated to support ontology annotation and include

indication for nanomaterials in training and test set. The list of endpoints is modified to include separate

field for protocols (assays) related to an endpoint. The list of endpoints is updated to contain the

recently released (April 2016) OECD Harmonized templates and list of assays from the publicly released

NANoREG templates11. A PMML support is also introduced, allowing to load PMML fields, specifying

descriptor and software into the QMRFEditor.

Figure 31: QMRF Editor 3.0.0

10 https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/

11 http://www.nanoreg.eu/media-and-downloads/templates/269-templates-for-experimental-data-logging

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/
http://www.nanoreg.eu/media-and-downloads/templates/269-templates-for-experimental-data-logging

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 43 of 51

The QMRF Editor 3.0.0 includes a new panel, allowing free text search of a local copy of the

eNanoMapper ontology. The query is entered into a text box at the top and the results are displayed as

clickable entries. Clicking on any of the subsequent hits will move it to the first place (by launching a

search for itself). While the cursor is in any editable text box in QMRF chapters, selecting a text (e.g.

“cytotoxicity”) and clicking Shift+F7 launches a search with the selected text and shows the results in the

right panel. Clicking Shift+F8 will paste the name and the ontology URI of the first hit, e.g.

[cytotoxicity](http://purl.bioontology.org/ontology/npo#NPO_1340)

Figure 32: QMRF Editor 3.0.0 Defining the endpoint (1)

A field for ontology terms is added to the section 1.3. Software coding the model, 3.2. Endpoint, 4.2.

Explicit Algorithm, 4.3 Descriptors in the model, 4.6. Software name and version for descriptor

generation, 5.3. Software name and version for applicability domain assessment.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 44 of 51

Figure 33: QMRF Editor 3.0.0 Defining the algorithm

Nanomaterial indication for training and test datasets is added.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 45 of 51

Figure 34: QMRF Editor 3.0.0 Internal validation

The endpoint field is extended to explicitly list protocols and ontology terms. The text fields are editable

and can be modified.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 46 of 51

Figure 35: QMRF Editor 3.0.0 Endpoints

The new search tool facilitates finding and selecting proper protocol and ontology terms.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 47 of 51

Figure 36: QMRF Editor 3.0.0 Defining the endpoint (2)

The QMRF Editor 3.0.0 and qmrf.dtd (v.3.0) are released and available for download.

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/3.0.0/

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/3.0.0/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 48 of 51

7. CONCLUSION
In this report, we have outlined the new functionalities added to JQ, nano-lazar, and the QMRF Editor

3.0.0, namely validation schemes, read across training/prediction services and QPRF/QMRF reports.

Therefore, users may now use similarity for making predictions, validate their models and receive

automated reports on both their predictions and models. Output reports can be viewed and edited

online, and later saved as PDF files to the user’s personal computer. This information, in addition to the

services reported in previous deliverables of WP4 (creating datasets, training models, making

predictions, mechanistic modelling, experimental design and interlaboratory testing), can provide an

extensive computational analysis framework for ENM safety assessment.

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 49 of 51

BIBLIOGRAPHY

1. OECD 2007, OECD Guidance Document on the Validation of (Quantitative) Structure-Activity

Relationship [(Q)SAR] Models. Retrieved from http://www.oecd.org/env/guidance-document-

on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-

en.htm (Accessed: 31/08/16)

2. QSAR Tools - QPRF 1.1, European Union Reference Laboratory for alternatives to animal testing

(EURL ECVAM), Retrieved from https://eurl-ecvam.jrc.ec.europa.eu/laboratories-

research/predictive_toxicology/qsar_tools/qrf/QPRF_version_1.1.doc/view (Accessed: 31/08/16)

3. Walkey, C. D., et al. (2014). Protein corona fingerprinting predicts the cellular interaction of gold

and silver nanoparticles, ACS Nano 8(3): 2439-2455.

4. Gajewicz et al. (2015). Towards Understanding Mechanisms Governing Cytotoxicity of Metal

Oxides Nanoparticles: Hints from Nano-QSAR Studies, Nanotoxicology 9 (3): 313-325

https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/qrf/QPRF_version_1.1.doc/view
https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/qrf/QPRF_version_1.1.doc/view

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 50 of 51

APPENDIX

The Jaqpot Quattro (JQ) API documentation can be found at

http://test.jaqpot.org:8080/jaqpot/swagger/. JQ is an extension of the Jaqpot web application, which

was originally developed during the OpenTox project and features improved efficiency and additional

functionality. JQ is an open-source project, written in Java and licensed with the GNU GPL v3 license. It

provides asynchronous execution of tasks submitted by users, authentication, authorisation and

accounting mechanisms powered by OpenAM. JQ is part of the eNM framework and communicates

with other web services in the framework via the common REST API described. The source code is

publicly available from https://github.com/KinkyDesign/JaqpotQuattro. A screenshot of the API can be

seen in Figure 37. All functionalities made available for this deliverable can also be accessed using the

user interface (UI). A screenshot of the UI can be seen in Figure 38, found at

http://test.jaqpot.org:8000/.

Within the last months nano-lazar functionality was completely integrated into the lazar framework

which was created during the OpenTox project. lazar is a GNU GPL v3 licensed open-source project

written in Ruby. It is a very flexible library for the generation, validation and inspection of read-across

models, that can use measured and calculated descriptors from OpenBabel, CDK and JOELib libraries,

custom similarity measures for neighbor identification and any R algorithm for local QSAR models. lazar

communicates with other eNanoMapper services via the common REST API. Source code is publicly

available from https://github.com/opentox/lazar and the whole system can be installed with a single

command as a Ruby gem from https://rubygems.org/gems/lazar. Documentation for the lazar API can

be found at http://www.rubydoc.info/gems/lazar. Although lazar is primarily a command-line oriented

library it serves as the basis of graphical user interfaces, e.g. the nano-lazar web-application at

https://nano-lazar.in-silico.ch (Figure 24).

http://app.jaqpot.org:8080/jaqpot/swagger/
https://github.com/KinkyDesign/JaqpotQuattro
http://test.jaqpot.org:8000/
https://github.com/opentox/lazar
https://rubygems.org/gems/lazar
https://nano-lazar.in-silico.ch/

eNanoMapper 604134 7 November 2016 DELIVERABLE

REPORT D4.6

Page 51 of 51

Figure 37: Screenshot of Jaqpot API found at http://test.jaqpot.org:8080/jaqpot/swagger/

Figure 38: Screenshot of Jaqpot UI found at http://test.jaqpot.org:8000/

http://test.jaqpot.org:8080/jaqpot/swagger/
http://test.jaqpot.org:8000/

