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GLOSSARY 
Abbreviation / acronym Description 

JQ JaqPot Quattro 

UI User Interface 

RA Read Across 

QSAR Quantitative Structure-Activity Relationship 

nQSAR nano-QSAR 

eNM eNanoMapper 

API Application Programming Interface 

CV Cross Validation 

QPRF QSAR Prediction Reporting Format 

QMRF QSAR Model Reporting Format 

DoA Domain of applicability 

CL Confidence Level 

LAZAR Lazy Structure-Activity Relationships 
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1. EXECUTIVE SUMMARY 

Scientific reports carry significant importance for the straightforward and effective transfer of 

knowledge, results and ideas. Good practice dictates that reports should be well-structured and concise. 

This deliverable describes the reporting services for models, predictions and validation tasks that have 

been integrated within the eNanoMapper (eNM) modelling infrastructure.  

Validation services have been added to the Jaqpot Quattro (JQ) modelling platform and the nano-lazar 

read-across framework developed within WP4 to support eNM modelling activities. Moreover, we have 

proceeded with the development of reporting services for predictions and models, respectively QPRF 

and QMRF reports.  

Therefore, in this deliverable, we first describe the three validation schemes created, namely training 

set split, cross- and external validation in detail and demonstrate their functionality both on API and UI 

levels. We then proceed with the description of the read across functionalities and finally, we present 

and describe the QPRF and QMRF reporting services. 
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2. INTRODUCTION 

Deliverable 4.6 describes the functionalities and tools that have been developed during the 

eNanoMapper (eNM) project for validating the statistical and machine learning (ML) algorithms and 

reporting on the predictions and the models themselves.  

Section 3 of this report describes the validation schemes and the respective reporting services made 

available by JQ and nano-lazar modelling frameworks for both regression and classification algorithms, 

which compute and provide statistics such as R-squared, R^2 Adjusted, RMSD, F-Value, Standard Error, 

Accuracy, Precision, Recall, F1-score, Jaccard index, as well as informative figures, wherever applicable.  

Section 4 presents the read across methods and services which have been developed and integrated in 

the nano-lazar and JQ frameworks for filling data gaps and for complementing QSAR modelling tools.  

Sections 5 and 6 describe the development of services for the automatic creation of QPRF and QMRF 

reports respectively, according to OECD guidelines. JQ and nano-lazar reporting services are presented, 

where QMRF or QPRF fields are automatically filled in, when the appropriate entries are present in the 

database (https://data.enanomapper.net), but are also fully editable for allowing users to fill in missing 

information or add descriptions. Section 6 also presents the QMRF Editor 3.0.0, which is a standalone 

Java application with user friendly installation, uses the eNM ontology and can be used independently 

to compile QMRF reports for any model.  

Full demonstrations of the above processes are provided in this deliverable, with the help of the 

Swagger API documentation and/or the user interfaces that provide visualization of the web service 

functionalities.  

These additions may be considered as extensions to the OpenTox algorithm and modelling API. 

  

https://data.enanomapper.net/
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3. VALIDATION SCHEMES AND REPORTING 

SERVICES 
 

3.1 VALIDATION SERVICES IN THE JQ MODELLING FRAMEWORK 

 

Validation schemes have been added to the JQ functionalities in order to provide users with the 

opportunity to evaluate the accuracy and robustness of their models. In this service, JQ provides 

information on the algorithm type, number of variables used and accuracy metrics depending on the 

type of algorithm. Two types of algorithms are complemented by validation services in JQ, namely 

classification and regression algorithms. For classification, the metrics provided are Accuracy, Precision, 

Recall, F1-score and Jaccard index. For regression, the service provides R-square, R^2 Adjusted (if 

applicable), RMSD, F-Value, Standard Error. In both cases the full list of predictions is provided. Finally, 

several figures are created: confusion matrix (for classification), real vs. predicted and QQ plot (for 

regression).  

In the validation API users may submit datasets and models for validation using three POST methods. 

The available options are cross validation (stratified or random), training set split and external 

validation, as shown in Figure 1 found at http://test.jaqpot.org:8080/jaqpot/swagger/. All validation 

methods use the Task system in their execution. The result of the task will always be a Report 

document.  

 

Figure 1: Validation options for JQ’s API 

 

 

http://test.jaqpot.org:8080/jaqpot/swagger/


 

 

eNanoMapper 604134 7 November 2016 DELIVERABLE 

REPORT D4.6 

Page 11 of 51 

 

3.1.1 EXTERNAL VALIDATION 

The Swagger documentation of the JQ external validation API is shown in Figure 2. A user must have 

already built or located an existing predictive model and have created a test set with the same variables 

as the training set. The following parameters should be supplied to the external validation POST 

method: 

1) Model URI: This is the URI of the model to be used for making the prediction and therefore 

validation. It may be retrieved using the API by GET-ing all models visible by the user, or 

selected from those already in JQ, by GET-ing the list of featured models in text/csv format. A 

model can be further viewed by GET-ing the model by its ID.  

2) Dataset URI: URI of the dataset on which to perform the external validation. Users must make 

sure the dataset used is compatible with the model, i.e. shares attributes with the training set 

used to build the model.  

A task is then created which can be monitored via its ID using the GET task by ID API. Once completed, a 

report can be viewed in JSON format.  

 

Figure 2: JQ External Validation API 
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From the JQ user interface, this process is carried out in a rather straightforward manner, by first 

selecting a model already created (Figure 3) and then an external dataset (Figure 4) on which to perform 

the predictions and subsequently validate the model. Once the task is completed, the user may view the 

results in the form of a report, which contains the model predictions and various performance metrics, 

as well as informative plots such as QQ Plot. 

  

Figure 3: Select model for external validation 

 

 

Figure 4: Select dataset for external validation 
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For the external validation example we used the following model 

http://test.jaqpot.org:8000/m_detail?name=gaj-10-lr, and the example dataset 

http://test.jaqpot.org:8000/data_detail?name=xbR5AMG1rOBc  as the test set. The model has been 

built using the R linear regression algorithm http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-

lm on the training set suggested in Gajewicz et al. (10 of 18 published MeOX nanoparticles for predicting 

HaCaT toxicity, whilst the remaining instances were used as the test set). Two input variables were 

selected, namely Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide 

nanocluster DHcf, whilst the endpoint is described by logLC50. The produced report is provided in the 

following link: http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp. The report can be 

downloaded as a PDF file.  

 

 

3.1.2 CROSS VALIDATION 

The Swagger documentation of the JQ cross validation API is shown in Figure 5. Users may choose to 

cross validate an existing algorithm on a particular data set before building the final model. In this case, 

options need to be provided for all data splits, including scaling or PMML transformations. Furthermore, 

the dataset, prediction feature and the modelling algorithm need to be provided, including potential 

algorithm tuning parameters if any (i.e. PLS with VIP scores requires the number of latent variables to be 

provided to the algorithm). Finally, the user may choose stratified or random cross validation, for which 

he/she will need to provide a random seed, as with commercial machine learning software applications.  

Please note that number of folds must be an integer and less than or equal to the number of instances. 

This option is only available through the API, as the number of folds is selected from a drop-down list in 

the UI.  

http://test.jaqpot.org:8000/m_detail?name=gaj-10-lr
http://test.jaqpot.org:8000/data_detail?name=xbR5AMG1rOBc
http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm
http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm
http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp
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Figure 5: JQ Cross validation API 

Performing a cross validation with the UI, requires the selection of a dataset, algorithm and parameters. 

A Dataset may be selected either from the example datasets or the list of datasets visible to the user, as 

shown in Figure 6. In this example, we selected the same dataset discussed above, specifically from 

Gajewicz et al, comprising 10 MeOX nanoparticles described by 29 properties (found at 

http://test.jaqpot.org:8000/data_detail?name=E20vuMNNTHsp).  

 

http://test.jaqpot.org:8000/data_detail?name=E20vuMNNTHsp
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Figure 6: Select dataset for cross validation screen 

 

On the next screen, an appropriate algorithm should be chosen from the regression or classification list. 

For this example, we have chosen the first option available, namely the R language Linear Regression 

(http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm). This is shown In Figure 7.  

 

 

Figure 7: Select algorithm for cross validation screenshot 

 

http://test.jaqpot.org:8000/algorithm_detail?name=ocpu-lm
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Finally, the validation parameters need to be set. This screen is almost identical to the “Train a model” 

screen (see Deliverable 4.3). Apart from the endpoint selection and data scaling normalisation, the user 

now has two additional options to specify, the number of folds and whether the training dataset in each 

fold should be stratified (normal), random (user provides a seed for random function) or split based on 

the observed order of data instances (None). A screenshot of this section is shown in Figure 8. As 

discussed briefly above, users of the JQ UI are offered 3, 5 and 10-fold cross validation options in order 

to avoid mistakes (i.e. disproportional number of folds) and also avoid the over-consumption of 

resources. 

 

 

 

Figure 8: Screenshot of additional algorithm parameters (folds, stratify and seed) for cross 

validation 

 

For this example, we followed again the instructions set by Gajewicz et al. and have selected the same 

two input variables, Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide 

nanocluster DHcf, and logLC50 as the endpoint. Scaling and stratification were both set to “None”. By 

clicking on “validate”, we have run a 3-fold (default) cross validation on the specified dataset using 

linear regression for the current example. Once completed, users may view the resulting report by 

clicking on “See result”. This is located at: 

 http://test.jaqpot.org:8000/report?name=eJnCCdzAwNCvh2x  

  

http://www.enanomapper.net/deliverables/d4/150801_eNanoMapper-D4_3final.pdf
http://test.jaqpot.org:8000/report?name=eJnCCdzAwNCvh2x
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3.1.3 TRAINING SET SPLIT VALIDATION 

The last option available in the validation API is to validate an existing algorithm by splitting a dataset 

into training and test sets on a specified ratio. The Swagger documentation of the JQ training set split 

validation API is shown in Figure 9. As in the cross validation case, transformations and scaling need to 

be provided if required, as well as the algorithm and prediction feature. More specifically, users must 

provide the following options: algorithm URI, training dataset URI, algorithm parameters (if applicable), 

prediction feature (usually biological endpoint), PMML transformations (optional), scaling (normalize or 

scale between 0 and 1; optional), ratio (training to test set split; between 0 and 1) and stratify (optional; 

‘normal’, ‘none’ or ‘random’). Option ‘None’ splits the data sequentially, ‘normal’ adds stratification, for 

‘random’ users must provide a seed). 
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Figure 9: JQ Training set split validation API 

 

Users of JQ through the user interface must select a dataset and algorithm as described above in detail. 

The only additional option for the algorithm is the “Select Split Ratio” field, which should be a value 

larger than zero and smaller than one, which describes the training-to-test-set-ratio to the algorithm. 

Therefore 0.7 would suggest that 70% of instances will be used for training and 30% will be held out for 

testing/validation. This is shown in Figure 10. The “Stratify” drop down menu is still available for the 

different instance selection options. The resulting report can be viewed once the task is completed.  
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Figure 10: Algorithm options for training set split validation 

 

Using the same dataset (Gajewicz et al., 10 MeOX NPs, found at 

http://test.jaqpot.org:8000/d_validate?dataset=E20vuMNNTHsp) and algorithm (JQ’s R linear 

regression implementation) as the example above, we demonstrate the training set split validation. 

Mullikens electronegativity Xc and Standard enthalpy of formation of metal oxide nanocluster DHcf 

were selected again as input variables and logLC50 as the endpoint, according to Gajewicz et al. The split 

ratio was set to 0.7 (see Figure 10), whilst scaling and stratification were both set to “None”. The 

resulting split validation report can be found at: 

http://test.jaqpot.org:8000/report?name=BS4vJNc72Qomsea. 

 

3.1.4 VALIDATION REPORTS 

In order to view a validation report using the API, users must paste the report ID generated from one of 

the validation services in the “ID” field, as demonstrated in Figure 11. This process is the same for any 

type of validation scheme. The API then returns the report in JSON format in the response body, which 

contains single calculations, array calculations and figures. Single calculations are metrics such as R^2, 

standard error etc., array calculations contain the real and predicted values for comparison, and figures 

contain plots such as a QQ plot. 

http://test.jaqpot.org:8000/d_validate?dataset=E20vuMNNTHsp
http://test.jaqpot.org:8000/report?name=BS4vJNc72Qomsea
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Figure 11: JQ GET Report by ID API 

 

On the UI level, users may view the report directly after a validation task is completed, as well as under 

“My Resources”. As mentioned above, these reports contain single calculations and array calculations 

(demonstrated in Figure 12), as well as images (shown in Figure 13) and can be downloaded as PDF files. 

Figure 13 present metrics and plots corresponding to the case study presented in section 3.1.1.  

(http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp). 

http://test.jaqpot.org:8000/report?name=q8HpVxGYDRFsQLp
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Figure 12: Validation Performance metrics and predictions 

 

 

 

Figure 13: Plots contained within validation report 
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3.2 VALIDATION SERVICES IN THE NANO-LAZAR MODELLING FRAMEWORK 

 

Within the OpenTox project we have developed and implemented a REST-based validation service that 

is applicable to all OpenTox compliant modelling services. This service was updated to reflect the latest 

API changes and is available at https://services.in-silico.ch/validation.  

Practical experience with large scale validation experiments have shown however that the REST 

approach is time consuming, inefficient, error prone and hard to debug, especially during the 

development phase. For this reason, validation schemes were tightly integrated into the lazar system, 

which led to a significant speedup of validation runtimes and a much-improved tracing of prediction 

errors. Based on user feedback applicability domain definitions for classifications were revised. The 

slightly unintuitive confidence index was replaced by positive and negative prediction probabilities. 

At present lazar supports all major validation schemes for classification and regression including 

● external validation 

● training-test set splits 

● cross validation 

● leave-one-out validation 

These validations generate the usual validation metrics (e.g. accuracy, sensitivity, specificity, true 

positive rate, true negative rate, r^2, RMSE, MAE) and graphical depictions (e.g. correlation plots). Apart 

from these standard validation features lazar provides tools specifically for model developers, e.g. the 

inspection of individual predictions, sorting of predictions according to prediction errors or the distance 

to the applicability domain. 

The validation API is documented at http://www.rubydoc.info/gems/lazar. Like the rest of lazar 

validations are created on the command line, but lazar provides convenient methods for model building, 

that generate prediction models together with a default set of validations (three independent cross 

validations and leave-one-out validation) with a single method call. Models and validation results can be 

integrated into GUIs (e.g. nano-lazar, https://nano-lazar.in-silico.ch) without any modifications (Figure 

14). 

https://services.in-silico.ch/validation
http://www.rubydoc.info/gems/lazar
https://nano-lazar.in-silico.ch/
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Figure 14: Three independent cross validation results in the GUI 

The lazar QMRF report service (section 7) creates QMRF reports directly from model validations. In 

current development versions (https://nano-lazar-dev.in-silico.ch ) QMRF and QPRF reports will be 

directly available from the nano-lazar GUI (Figure 15). 

 

Figure 15: Downloaded QMRF report from nano-lazar GUI 

 

 

https://nano-lazar-dev.in-silico.ch/
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4. READ ACROSS TRAINING AND PREDICTING 

FUNCTIONALITIES 
 

In this section, we will describe the read across functionality of JQ and nano-lazar, which allows users to 

make predictions for a query nanoparticle based on its similarity to nanoparticles used in a training set 

in order to build a model.  

 

4.1 JQ READ ACROSS SERVICES 

 

As with all other JQ services described in previous deliverables, read across options can be accessed 

both directly on the right-hand side of the main JQ UI page, or under “Actions”. The two options 

currently available are “Train” and “Test”. These work similarly to the modelling services described in 

Deliverable 4.3. For training a model, users must provide a dataset, a distance metric (currently 

available: euclidean, manhattan or ensemble), a distance threshold between zero and one, and whether 

they would like to compute a confidence level when making a prediction. For testing, users must simply 

select a dataset whose attributes are compatible with those of the dataset used in training for building 

the read across model. In the following sections, JQ read across training and testing functionalities will 

be explained on both API and UI levels. 

 

4.1.1 JQ READ ACROSS API 

The read across functionalities on the API level can be found at 

http://test.jaqpot.org:8080/jaqpot/swagger/.  

For training a read across model, users may use the POST algorithm by ID API by inserting the algorithm 

ID python-read-across. This (and indeed the full list of algorithms) can also be retrieved using the GET 

algorithm API. Figure 16 shows a screenshot of the API, which requires several fields to be filled in by 

the user. These comprise the model title and description, a dataset URI and the endpoint variable 

(prediction feature) URI, as well as whether transformations or scaling/normalisation are appropriate. 

The algorithm ID should be set to “python-read-across” and three parameters must be supplied in 

dictionary format, namely “distance”, “threshold” and “confidence”.  Specifically: 

● Distance: “euclidean”, “manhattan” or “ensemble” 

http://test.jaqpot.org:8080/jaqpot/swagger/
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● Threshold: any number between 0 and 1 

● Confidence 0 (no) or 1 (yes) depending on whether confidence levels should be calculated upon 

testing 

Therefore, the parameters dictionary (see previous deliverables) is along the lines of:  

{"confidence": 1, "distance": "ensemble", "threshold": 0.1} 

 

 

Figure 16: JQ Read Across training a model using JQ POST algorithm by ID API 
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Making a prediction using the read across method is identical to all QSAR testing methods available in 

JQ. Users must provide a compatible dataset to the training set and the ID of the model built to the 

POST model by ID API found under model on the JQ swagger page. This is shown in Figure 17. The 

resulting predictions are demonstrated via the UI later in this deliverable, as it was deemed to be 

preferable for the reader due to friendly visualisation. 

 

 

Figure 17: JQ’s POST model by ID for making read across predictions 

 

4.1.2 JQ READ ACROSS FUNCTIONALITIES FROM THE UI 

In this section, we will demonstrate the read across functionalities of JQ on the UI level. These can be 

found on the main screen (bottom right; “Read Across” train/test) or under the “actions” menu. As with 

regular modelling services, read across allows users to create a model in order to be later used to make 

a prediction based on similarity during the testing process.  

Since the algorithm had already been selected (user chooses read across prediction), this first requires 

the choice of a dataset on which to build the model. In the next screen users, may parameterise the 
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algorithm, by selecting a distance metric between ‘euclidean’, ‘manhattan’ and ‘ensemble’ and a 

threshold between 0 and 1 (the closest to 0 the strictest) which will be used to assess nanoparticle 

similarity. As with the other modelling services, users must provide a model name and description, as 

well as select variables and endpoint. Finally, users may select a method to calculate the prediction 

confidence level. Currently, the only option available is “Nearest Neighbour Confidence” (or “None”). 

This is demonstrated in Figure 18.  

 

Figure 18: Options available to the user for training a model using the read across algorithm 

By clicking on “Train”, a task is created. Users may monitor this task. When it is completed, an option 

“See result” appears under “Task Completed”. By clicking on “See result”, the user may view the model 

details, such as the description, the algorithm used to create it, the dependent/independent/etc. 

features, and three options: predict, validate and delete. The model can be retrieved at any time under 

the “My resources” tab.  

For this example, the dataset used for building the model comprises 56 gold NPs described by 25 

physicochemical descriptors and the endpoint to be predicted is the log2 transformed Net Cell 

Association. This dataset is taken from Walkey et al. and can be found under JQ’s example datasets 

(http://test.jaqpot.org:8000/data_detail?name=ghh9Usgiv2ZuOjjsaZHA). Manhattan distance was 

chosen with a threshold of 0.1 and the confidence value was calculated using “Nearest Neighbour 

Confidence”. The resulting model used for this demonstration is found at: 

http://test.jaqpot.org:8000/m_detail?name=shWpOGagqSJ5l6PfvkpJ.  

http://test.jaqpot.org:8000/data_detail?name=ghh9Usgiv2ZuOjjsaZHA
http://test.jaqpot.org:8000/m_detail?name=shWpOGagqSJ5l6PfvkpJ
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Read across prediction services are available both on the main screen in the “Read Across” box, as well 

as under “Actions”. As with other modelling services, users must first select an already trained model. 

Users must then either select a dataset on which read across predictions will be performed or select 

“Insert Values”, for which JQ will provide a table to be filled in containing the full list of variables used by 

the read across model. Users may add more rows or directly paste a table from a spreadsheet (i.e. from 

Microsoft Excel). This is shown in Figure 19. Should users choose to select a dataset, they must ensure 

that it is compatible with the model, meaning that the dataset shares the same attributes. Such a 

dataset is the test dataset provided by Walkey et al., comprising 28 gold NPs described by 25 

physicochemical properties (http://test.jaqpot.org:8000/data_detail?name=yzsAXE5rLPzz). This dataset 

is also found in JQ’s example datasets.  

 

Figure 19: Insert values example of JQ read across prediction functionality 

 

 

Figure 20: Select dataset example of JQ read across prediction functionality 

http://test.jaqpot.org:8000/data_detail?name=yzsAXE5rLPzz
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As described above, once a prediction is completed users may click on “See result”. The screen will 

display the nanoparticles in the dataset used for prediction, along with the prediction feature (endpoint) 

and, if selected, the confidence value of the prediction. This is demonstrated in Figure 20 for which the 

dataset can be found at 

http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6Pfvkp

J. The prediction dataset created can be retrieved by the owner at any time under “My resources”. 

 

 

Figure 21: Predictions derived by JQ read across algorithm, along with the prediction 

confidence level between 0 and 1 (the closer to 1 the more confidence in the prediction). 

 

http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6PfvkpJ
http://test.jaqpot.org/predicted_dataset?name=EjpUZkl6EJxpG3b1tmJ4&model=shWpOGagqSJ5l6PfvkpJ
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4.2 NANO-LAZAR READ ACROSS SERVICES 

4.2.1 NANO-LAZAR RUBY API 

Nanoparticle model building, validation and predictions are now fully integrated in the lazar read across 

framework. Its primary use is to create and validate read across models in Ruby scripts or in an 

interactive Ruby shell. Installation and usage of the lazar framework is quite straightforward: 

 

Installation:  

 

gem install lazar 

 

Mirror eNM database into a local directory:  

 

require 'lazar' 

 OpenTox::Import::Enanomapper.mirror enm_data_dir 

 

Create and validate prediction model with default settings: 

 

model = OpenTox::Model::NanoPrediction.from_json_dump 

enm_data_dir 

This command creates a nano-lazar model and validates it with three independent 10-fold cross 

validations. 

 

Inspect cross validations: 

 

model.crossvalidations 

 

Predict a random nanoparticle from the training dataset: 
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query_particle = model.training_dataset.substances.sample 

model.predict query_particle 

 

Although lazar has reasonable and tested defaults for different QSAR problems, algorithms and 

parameters for similarity calculations and local models can be selected via a simple declarative 

interface. In order to create a model with custom algorithms and parameters we would execute for 

example: 

 

algorithms = { 

       :descriptors => { 

         :method => "properties", 

         :categories => ["P-CHEM",”Proteomics”] 

       }, 

       :prediction => {:method => 'Algorithm::Caret.pls' }, 

     } 

 model.model = OpenTox::Model::Lazar.create( 

  training_dataset: model.training_dataset, 

  prediction_feature: model.prediction_feature, 

  algorithms: algorithms 

) 

 

These commands create local partial least squares (PLS) models with physchem and proteomics 

descriptors. 

 

The complete lazar Ruby API is documented at http://www.rubydoc.info/gems/lazar. 

 

Although lazar is primarily designed for command line model development, cross validation results and 

nanoparticle predictions and  other functions are also accessible from a web GUI (https://nano-lazar.in-

silico.ch) and a REST interface (URI). Both are described in more detail in the following sections. 

 

http://www.rubydoc.info/gems/lazar
https://nano-lazar.in-silico.ch/
https://nano-lazar.in-silico.ch/
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4.2.2 NANO-LAZAR REST API 

The nano-lazar Rest API interface provides a Restful web service. It is the web service implementation of 

the nano-lazar Ruby API for obtaining information on data in the nano-lazar framework and for 

performing predictions and descriptor calculations. The web service is documented with Swagger 2.0 

specification. Additionally a Swagger-UI web interface at https://enm.in-silico.ch/swagger/ provides a 

possibility to read and operate the API. 

 

Figure 22: Predict a compound or nanoparticle 

 

4.2.3 NANO-LAZAR GUI 

The nano-lazar GUI (https://nano-lazar.in-silico.ch/) is tightly integrated with the eNM infrastructure. It 

uses data from the eNM data warehouse for model building and eNM ontologies for data annotation 

and GUI elements (e.g. description of domain specific terms). 

 

https://enm.in-silico.ch/swagger/
https://nano-lazar.in-silico.ch/
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Figure 22 shows a screenshot of the nano-lazar query page with a summary of cross validation results 

and entry forms for nanoparticle properties. 

 

Figure 23: Summary of crossvalidation results 

 

Nano-lazar predictions are depicted on the following screenshot (Figure 23). nano-lazar presents 

predictions in tabular form with the query nanoparticle on top followed by similar nanoparticles for the 

local QSAR model. Each nanoparticle is characterised by its similarity to the query compound, endpoint 

measurements and the properties relevant for the particular endpoint. If the query nanoparticle is part 

of the training data (as in this example) all information from this substance is removed from the training 

set before making the prediction. In this case the measured value is displayed for comparison purposes. 
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Figure 24: nano-lazar prediction. 
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5. QPRF REPORTING SERVICES 
5.1 QPRF REPORTS IN THE JQ MODELLING FRAMEWORK 

QPRF reports may be generated for each ENM after a prediction has been performed. These contain all 

fields set by the OECD guidelines [1], namely: 

● Substance: Contains information such as CAS and EC numbers, SMILES, InChi, etc. 

● General: information such as date and creator name and email. 

● Prediction: Biological endpoint, variables, model used, DoA, etc 

● Adequacy: Optional field, containing regulatory purpose, conclusion etc. 

All fields made available from the dataset, as well as information about the model and the prediction 

are added to the report automatically. Should information be missing, what is expected to be filled in is 

described by the field. All fields are editable, in order to allow the user to add extra information not 

contained in the dataset or model, as well as the optional fields such as conclusion1s. As with all reports, 

QPRF reports are downloadable as PDF documents. 

 

The Swagger documentation of the JQ QPRF API is shown in Figure 25. Users must POST the dataset ID 

and substance URI (nanoparticle in question) in order to receive the QPRF report. Once the task 

generated has been completed, users may view the report using the GET Report by ID API.  

 

 

Figure 25: Produce QPRF report using JQ’s POST Dataset ID QPRF API 
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In order to receive a QPRF report, a user must have made a prediction (by selecting a model and 

dataset; as demonstrated in previous deliverables). Upon clicking on “See result” the prediction dataset 

has an extra column on the far right, namely “QPRF Report”, as seen in Figure 25. By clicking on this, 

they are redirected to the QPRF report page. The report (as with any other report) may be downloaded 

as a PDF. For this demonstration, the report can be viewed using the JQ UI at 

http://test.jaqpot.org:8000/report?name=ALZ8LDBrwXrCtsY. 

 

 

Figure 26: Prediction screen containing QPRF report for each nanoparticle (Gajewicz et al. 

dataset, 8 MeOX NPs for predicting HaCaT toxicity). 

 

We reiterate that all entries in the report are editable. This functionality has been added to allow users 

to fill in gaps according to their knowledge, should the entries not exist in the database, but also 

complete fields such as experiment purpose or conclusion which are not automatically generated. This 

can be seen in Figure 27-Figure 28. 

 

 

http://test.jaqpot.org:8000/report?name=ALZ8LDBrwXrCtsY
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Figure 27: Top section of report shown in JQ UI. It can be seen all fields are editable. 

 

 

Figure 28: Screenshot of fields available in JQ QPRF report service viewed via the UI 
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5.2 QPRF REPORTS IN NANO-LAZAR 

 

With the Ruby QSAR reporting library QSAR-report (see 6.1 Ruby QSAR reporting library) it is possible to 

produce QPRF reports in ruby applications. The library generates QPRF reports in Version 1.11 in JSON 

format. In the upcoming months, until M36 of the project, we will implement the QPRF reporting 

feature into nano-lazar. A full documentation of the QPRF library usage is documented at 

RubyDocs.org2. 

  

                                                           

1 EC Joint Research Center: QSAR Prediction Reporting Format (QPRF) (version 1.1, May 2008) https://eurl-

ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/qrf/QPRF_version_1.1.pdf 

2 RubyDocs: QSAR-report, Class: OpenTox::QPRFReport 

http://www.rubydoc.info/gems/qsar-report/OpenTox/QPRFReport 
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6. QMRF REPORTING SERVICES 
6.1 RUBY QSAR REPORT LIBRARY 

We have developed a ruby library to produce QMRF and QPRF reports. As for many programming 

languages, the Ruby language has a huge variety of libraries and it supports the inclusion of third-party 

libraries. These libraries are mostly used in ruby code by so called gems. Gems are ruby library packages 

hosted in the public ruby community’s gem hosting service at https://rubygems.org3. 

The QSAR-report gem was developed to extend the lazar and nano-lazar toxicity prediction programs 

with QMRF and QPRF reporting features. The library gem is independent from lazar or nano-lazar and 

can also be used in any other ruby code. The library code is in general public license version 3 (GPLv34) . 

The  open source code is freely available and versioned at the Github5 code hosting platform. 

The library has two main classes OpenTox::QMRFReport and OpenTox::QPRFReport for the report types 

QMRF and QPRF. Instances of these classes can be easily filled with contents. 

There is a full documentation of the library with examples at RubyDoc.info6 . 

 

For full information on QSAR reporting see: JRC QSAR Model Database and QSAR Model Reporting 

Formats https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-

reporting-formats 

 

6.2 QMRF REPORT IN NANO-LAZAR 

The QMRF reporting feature is implemented in eNanoMapper’s nano-lazar REST API7 and the Nano-

Lazar toxicity prediction web-application8. REST API operations can be operated in a Swagger based API 

                                                           

3 RubyGems the Ruby community’s gem hosting service - QSAR report gem:  https://rubygems.org/gems/qsar-

report/ 

4 GNU General Public License 3 https://www.gnu.org/licenses/gpl-3.0.en.html 

5 Github code hosting platform https://github.com/opentox/qsar-report 

6 RubyDoc.info YARD documentation server - QSAR report gem: http://www.rubydoc.info/gems/qsar-report  

7 Lazar & Nano-Lazar REST Service API https://enm.in-silico.ch/swagger 

8 Nano-lazar toxicity prediction https://nano-lazar.in-silico.ch/predict (current version)  https://nano-lazar-dev.in-

silico.ch/predict (development version) 

https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-reporting-formats
https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-reporting-formats
https://rubygems.org/gems/qsar-report/
https://rubygems.org/gems/qsar-report/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/opentox/qsar-report
http://www.rubydoc.info/gems/qsar-report
https://enm.in-silico.ch/swagger
https://nano-lazar.in-silico.ch/predict
https://nano-lazar-dev.in-silico.ch/predict
https://nano-lazar-dev.in-silico.ch/predict
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documentation with a Swagger UI interface. QMRF reports can be generated for each lazar model by 

performing a GET request to the specific model. 

 

curl -X GET --header "Accept:application/xml" https://enm.in-

silico.ch/report/57dbdc7b4375ab563b601b3a 

curl example 

 

The QMRF report produces QMRF XML in version 1.3. The API generates a first version of the report. 

This 'prototype' can be downloaded in XML format. This XML file can be finalized for publication in the 

QMRF Editor 2.0 (https://sourceforge.net/projects/qmrf/). 

Example code9 and full documentation can be found at RubyDoc.info . 

 

Figure 29: QMRF report integration in the nano-lazar toxicity prediction web application 

                                                           

9 Nano-lazar example code: http://www.rubydoc.info/gems/qsar-report/file/example/example.rb 

https://sourceforge.net/projects/qmrf/
http://www.rubydoc.info/gems/qsar-report/file/example/example.rb
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Figure 30: Getting QMRF report from nano-lazar API 
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6.3 QMRF EDITOR 3.0.0 

 

The QMRF XML schema and the QMRF Editor was originally developed in 2007 on behalf of JRC by 

Ideaconsult Ltd. The QMRF Editor 2.0.010 was available for download since 2013. Within the framework 

of eNanoMapper, the qmrf.dtd schema was updated to support ontology annotation and include 

indication for nanomaterials in training and test set. The list of endpoints is modified to include separate 

field for protocols (assays) related to an endpoint. The list of endpoints is updated to contain the 

recently released (April 2016) OECD Harmonized templates and list of assays from the publicly released 

NANoREG templates11. A PMML support is also introduced, allowing to load PMML fields, specifying 

descriptor and software into the QMRFEditor.  

 

 

Figure 31: QMRF Editor 3.0.0 

 

                                                           

10 https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/  

11 http://www.nanoreg.eu/media-and-downloads/templates/269-templates-for-experimental-data-logging  

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/
http://www.nanoreg.eu/media-and-downloads/templates/269-templates-for-experimental-data-logging


 

 

eNanoMapper 604134 7 November 2016 DELIVERABLE 

REPORT D4.6 

Page 43 of 51 

 

The QMRF Editor 3.0.0 includes a new panel, allowing free text search of a local copy of the 

eNanoMapper ontology. The query is entered into a text box at the top and the results are displayed as 

clickable entries.  Clicking on any of the subsequent hits will move it to the first place (by launching a 

search for itself). While the cursor is in any editable text box in QMRF chapters, selecting a text (e.g. 

“cytotoxicity”) and clicking Shift+F7 launches a search with the selected text and shows the results in the 

right panel. Clicking Shift+F8 will paste the name and the ontology URI of the first hit, e.g. 

[cytotoxicity](http://purl.bioontology.org/ontology/npo#NPO_1340) 

 

 

Figure 32: QMRF Editor 3.0.0 Defining the endpoint (1) 

 

A field for ontology terms is added to the section 1.3. Software coding the model, 3.2. Endpoint, 4.2. 

Explicit Algorithm, 4.3 Descriptors in the model, 4.6. Software name and version for descriptor 

generation, 5.3. Software name and version for applicability domain assessment. 
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Figure 33: QMRF Editor 3.0.0 Defining the algorithm 

 

Nanomaterial indication for training and test datasets is added. 
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Figure 34: QMRF Editor 3.0.0 Internal validation 

 

The endpoint field is extended to explicitly list protocols and ontology terms. The text fields are editable 

and can be modified.  
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Figure 35: QMRF Editor 3.0.0 Endpoints 

 

The new search tool facilitates finding and selecting proper protocol and ontology terms. 
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Figure 36: QMRF Editor 3.0.0 Defining the endpoint (2) 

 

The QMRF Editor 3.0.0 and qmrf.dtd (v.3.0) are released and available for download.  

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/3.0.0/  

  

https://sourceforge.net/projects/qmrf/files/QMRF%20Editor/3.0.0/
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7. CONCLUSION 
In this report, we have outlined the new functionalities added to JQ, nano-lazar, and the QMRF Editor 

3.0.0, namely validation schemes, read across training/prediction services and QPRF/QMRF reports. 

Therefore, users may now use similarity for making predictions, validate their models and receive 

automated reports on both their predictions and models.  Output reports can be viewed and edited 

online, and later saved as PDF files to the user’s personal computer. This information, in addition to the 

services reported in previous deliverables of WP4 (creating datasets, training models, making 

predictions, mechanistic modelling, experimental design and interlaboratory testing), can provide an 

extensive computational analysis framework for ENM safety assessment.   
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APPENDIX 

The Jaqpot Quattro (JQ) API documentation can be found at 

http://test.jaqpot.org:8080/jaqpot/swagger/. JQ is an extension of the Jaqpot web application, which 

was originally developed during the OpenTox project and features improved efficiency and additional 

functionality. JQ is an open-source project, written in Java and licensed with the GNU GPL v3 license. It 

provides asynchronous execution of tasks submitted by users, authentication, authorisation and 

accounting mechanisms powered by OpenAM. JQ is part of the eNM framework and communicates 

with other web services in the framework via the common REST API described. The source code is 

publicly available from https://github.com/KinkyDesign/JaqpotQuattro. A screenshot of the API can be 

seen in Figure 37. All functionalities made available for this deliverable can also be accessed using the 

user interface (UI). A screenshot of the UI can be seen in Figure 38, found at  

http://test.jaqpot.org:8000/. 

Within the last months nano-lazar functionality was completely integrated into the lazar framework 

which was created during the OpenTox project. lazar is a GNU GPL v3 licensed open-source project 

written in Ruby. It is a very flexible library for the generation, validation and inspection of read-across 

models, that can use measured and calculated descriptors from OpenBabel, CDK and JOELib libraries, 

custom similarity measures for neighbor identification and any R algorithm for local QSAR models. lazar 

communicates with other eNanoMapper services via the common REST API. Source code is publicly 

available from https://github.com/opentox/lazar and the whole system can be installed with a single 

command as a Ruby gem from https://rubygems.org/gems/lazar. Documentation for the lazar API can 

be found at http://www.rubydoc.info/gems/lazar. Although lazar is primarily a command-line oriented 

library it serves as the basis of graphical user interfaces, e.g. the nano-lazar web-application at 

https://nano-lazar.in-silico.ch (Figure 24). 

  

http://app.jaqpot.org:8080/jaqpot/swagger/
https://github.com/KinkyDesign/JaqpotQuattro
http://test.jaqpot.org:8000/
https://github.com/opentox/lazar
https://rubygems.org/gems/lazar
https://nano-lazar.in-silico.ch/
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Figure 37: Screenshot of Jaqpot API found at http://test.jaqpot.org:8080/jaqpot/swagger/ 

 

Figure 38: Screenshot of Jaqpot UI found at http://test.jaqpot.org:8000/  

http://test.jaqpot.org:8080/jaqpot/swagger/
http://test.jaqpot.org:8000/

