misvik biology

Bioinformatics Analysis of Nano-based Omics Data

Penny Nymark, Pekka Kohonen, Vesa Hongisto and Roland Grafström

Hands-on Workshop on Nano Safety Assessment, 10th February, 2016, Technology Park, Basel

Overview of workshop session, 10th February, Basel

Short background presentation (15-20 minutes)

- \rightarrow Intro to omics data
- \rightarrow Intro to nano-omics data
- \rightarrow Intro to Chipster
- Hands-on interpretation of the data directly in Chipster (follow tutorial 20-25 minutes)
 - \rightarrow "Clicking" in a ready made session through a *guest* account at UPPMAX
 - \rightarrow Go through the tutorial
 - \rightarrow Discuss further interpretations
- Discussion (5-10 minutes)

Different 'omes and technologies to assess them

Technology	Biological event	
\downarrow	\downarrow	
SNP arrays, WG- seq,aCGH	Copy number, LOH, Mutations, SNP	DNA Protein-DNA Protein-RNA
ChIP-Chip, ChIP-seq	DNA-protein interaction	miRNA
Gene expression microarrays, RNA- seq, miR-seq	mRNA expression miRNA expression	RNA
Antibody or lysate arrays, 2D-gels, Mass spec	Protein expression	PPI Protein
Yeast 2 hybrid, Lysate arrays	Protein-protein interaction (PPI)	
Tissue microarrays	Protein expression and localization	Cell/Tissue
Metabolomics, NMR	Quantification of metabolites	Metabolite

Comparison of microarrays and RNA-sequencing technologies

Both technologies measure the transcriptome. Hybridization and sequencing based methods produce similar results.

Existing omics data – including nano-specific

Two repositories recommended (often required) by <u>major scientific journals</u> to archive functional genomics data to support reproducible research

EMBL-EBI						Services F	Research	Training	About us
	rrayExpress			nanomateria Examples: E-MEX	als P-31, cancer, p53, G	euvadis		Sear	ch md
Home Browse	e Submit Help About ArrayExpress						🦘 F	eedback	🔑 Login
Filter searc	h results Search resul	ts for nanoma	aterials		+ s	how more da	ta from E	MBL-EBI	
	2	4 experiments							
Accession	Title	Туре	Organism	Assays	Released 🗸	Processed	Raw	Views	Atlas
E-GEOD-69746	Exposure to different silver nanoparticles forms and silver salt:gene expression profile in Enchytraeus crypticus	transcription profiling by array	Enchytraeus crypticus	60	01/01/2016	<u>*</u>	<u>.</u>	-	-
E-GEOD-75148	Gene expression profiles in rat lung following intratracheal instillation with short size single-wall and multi-wall carbon nanotubes	transcription profiling by array	Rattus norvegicus	15	19/11/2015	±	8	12	-
E-GEOD-64788	Expression data from different tissues (shoots and roots) of Medicago truncatula exposed to three different types of biosolids amended soil	transcription profiling by array	Medicago truncatula	18	01/07/2015	<u>*</u>	<u>.</u>	5	-
E-GEOD-46999	Transcriptomic analysis of cultured lung epithelial cells exposed to multiwalled carbon nanotubes (Mitsui7)	transcription profiling by array	Mus musculu	s 22	05/05/2015	<u>*</u>	<u>*</u>	12	-
E-GEOD-46998	Transcriptomic analysis of mouse lung tissue exposed to multiwalled carbon nanotubes (Mitsui7)	transcription profiling by array	Mus musculu	s 22	05/05/2015	<u>.</u>	<u>.</u>	10	-
E-GEOD-63559	Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbor nanotubes in human lung cells (miRNA)	transcription profiling by array	Homo sapien	s 123	02/04/2015	<u>*</u>	8	55	-
E-GEOD-63552	Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells (Affymetrix)	transcription profiling by array	Homo sapien	s 123	02/04/2015	<u>.</u>	8	97	-
E-GEOD-55286	Transcriptomic analysis of mouse lung tissue exposed to two multiwalled carbon nanotubes (NRCWE-26 and NM-401) $$	transcription profiling by array	Mus musculu	s 139	18/02/2015	±	8	36	-
E-MTAB-2397	Systems biology approaches reveal low-dose effects of nanoparticles	RNA-seq of coding RNA	Homo sapien	s 9	17/01/2015	8		97	8
E-GEOD-63781	Effects of TiO2 and Ag nanoparticles on polyhydroxybutyrate biosynthesis by activated sludge bacteria	transcription profiling by array	mixed sample	e 18	03/12/2014	<u>*</u>	<u>.</u>	28	-
E-GEOD-61483	Gene expression profiles in rat lung following intratracheal instillation with impurity-free single-wall carbon nanotubes	transcription profiling by array	Rattus norvegicus	15	17/09/2014	<u>*</u>	8	3924	-
E-GEOD-61319	Gene expression profiles in rat alveolar macrophages exposure to single carbon nanotubes II	transcription profiling by array	Rattus norvegicus	3	11/09/2014	<u>*</u>	<u>*</u>	3499	-
E-GEOD-53989	A genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots	transcription profiling by array	Arabidopsis thaliana	7	15/06/2014	<u>*</u>	<u>*</u>	57	-
E-GEOD-47064	Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna	transcription profiling by array	Daphnia mag	ina 24	31/12/2013	<u>.</u>	<u>*</u>	98	-
E-GEOD-35142	Transcriptional responses to engineered nanoplatforms for drug delivery in primary human aortic endothelial cells	transcription profiling by array	Homo sapien	s 28	20/12/2013	<u>*</u>	8	46	-
E-GEOD-41333	Transcriptomic response of zebrafish embryos to Polyamidoamine (PAMAM)	transcription	Danio rerio	11	12/11/2013	<u>.</u>	*	70	-

- 63 223 experiments
- 1 900 034 assays
- 40.13 TB of archived data

S NCBI Resources 🕑 Hi	ow To 🖂	Sign in to NCBI
GEO DataSets	EO DataSets nanomaterials Save search Advanced	Search Help
Show additional filters	Display Settings: ♥ Summary, 20 per page, Sorted by Default order Send to; 0	Filters: Manage Filters
Entry type DataSets (3) Series (171) Samples (1220) Platforms (6) Organism Select	Results: 1 to 20 of 1400 <pre>Fint < Prov</pre> Page 1 et 70 Next > Last> Toxicogenomic response to gold nanoparticle exposed to LC10 of gold nanoparticles (Au-NPs). The Au-NPs are used as a model for studying particle-specific effects of manufactured nanomaterials (MNMs). Results provide insight into in vivo particle-specific toxicity of Au-NPs to C. elegans.	 ▼ Top Organisms [ree] Homo sapiens (693) Mus musculus (343) Daphnia magna (126) Rattus norvegicus (52) Pimephales promelas (32) More
Study type Expression profiling by array Wore Author	Organism: Caenorhabditis elegans Type: Expression profilio by array, transformed count, 2 agent sets Plafform: GPL200 Series: GSE32521 6 Samples Download data: GEO (CEL) DataSet Accession: GOS4571 ID: 4571 PubMed Similar studies GEO Profiles Analyze DataSet	Find related data Database: Select Find term
Select Attribute name issue strain More Publication fatos	Jurkat T cell response to silver nanoparticles Analysis of Jurkat T cells exposed to to 0.2 mg/L of silver nanoparticles (AgINPs) and Ag ions for 24 hours. Cell vability screening revealed that Jurkat T cells exhibit higher sensitivity to AqNPs than to Ag ions. Results provide insight into the molecular basis of this difference in sensitivity. Homo saplens Type: Expression profiling by array transformed count, 3 stress sets Reverse CERDBR0.0 Generation	Search details "nanostructures" [MeSH Terms] OR nanomaterials [All Fields]
30 days 1 year Custom range	Download data (SEO DataSet Accession: GDS3783 ID: 3783 Publied Similar studies <u>GEO Profiles</u> <u>Analyze DataSet</u>	Search See more
<u>Clear all</u> Show additional filters	Fullerene effect on vascular endothelial cells Analysis of umbilical vein endothelial cells (ECs) treated with hydroxyl fullerene, a major nanomaterial. Nanomaterials are known to translocate into the circulation and may thus directly affect vascular ECs. Results provide insight into the effects of fullerenes on endothelial inury and toxicity.	Recent activity <u>Ium Off</u> <u>Clear</u> Q nanomaterials (1400) <u>GEO DatsSets</u> Biclustering with heterogeneous variance
	urganism. Homo Saplens Type: Expression profiling by array, count, 2 agent sets Platform: GPL570 Series: GSE3364 4 Samples Download ddat. GEO DataSet Accession: GDS1553 ID: 1553 PubMed Similar studies <u>GEO Profiles</u> <u>Analyze DataSet</u>	The eNanoMapper database for nanomaterial safety information. Publied Gene expression profiles reveal distinct immunological responses of cobalt an Publied

- DataSets: 3 848
- Series: 64 877
- Platforms: 15365
- Samples: 1 671 418

Nano-specific omics data gathered in one place

"Omics"-Analysis Workflow

http://chipster.csc.fi

- Developed in 2008 by the Finnish IT Centre for Science
 - \rightarrow Updated frequently
 - \rightarrow Strong user support
- Increased use lately among researchers around the world
 - → Finland Finnish IT Centre for Science
 - \rightarrow Sweden Uppsala University
 - → The Netherlands Dutch TechCentre for Life Sciences
 - → Germany DKFZ German Cancer Research Centre
 - → ELIXIR-project provides courses
 - EGI-project will soon provide cloud services for all European researchers

Open source, server installation packages available, http://chipster.sourceforge.net/

Chipster

What is it?

User-friendly analysis software and workflow tool

- \rightarrow Intuitive graphical user interface (GUI)
- → Provides easy access to over 350 analysis tools (R/Bioconductor)
- \rightarrow No programming or command line experience required
- → Analysis steps taken can be saved as an automatic workflow, which can be shared

Free, open source software

Compatible with

- \rightarrow Largely all types of microarray data
- → All types of NGS data (ChIP-seq, RNA-seq and miRNA-seq, CNA-seq)

Chipster

Goals

Enable researchers without programming skills or extensive bioinformatics knowledge to:

- access an extensive selection of up-to-date tools for high-throughput data analysis
- work with the data through a graphical and intuitive user interface
- combine tools into automatic workflows that can be shared
- integrate different types of data and analysis workflows
- interpret results in meaningful and efficient visualizations

Chipster

How does it look?

- > Select data
- Select tool category
- > Select tool
- Click run
- View the results by double-clicking

Workflow view – analysis session

- Shows the relationship of the data sets
- In order to continue working later on, you can save the analysis session
 - → The session file is saved on your own computer, but you can also take it with you and continue on another computer by simple copying. Sessions can also be shared with other colleagues
- A workflow can also be <u>automated</u>
- You can of course also save multiple sessions separately

Running many analyses simultaneously

- You can have 10 analysis jobs running at the same time
- With the Task manager you can
 - \rightarrow View the status
 - \rightarrow Cancel jobs
 - \rightarrow View time, parameters

	Tool	Start Time	 Status 	Actions		
¥.	Quality control / Affymetrix - using RLE and NUSE	14:46:56	Running	Cancel		
1	Pathways / Hypergeometric test for GO	14:46:36	Running	Cancel		
1	Annotation / Affymetrix or Illumina genelist	14:46:29	Completed	Completed		
1	Promoter Analysis / Weeder	14:46:26	Completed			
/	Statistics / Two groups tests	14:45:58	Completed			
1	Preprocessing / Filter by standard deviation	14:45:30	Completed			
1	Normalisation / Affymetrix	14:43:57	Completed			
1	Quality control / Affymetrix basic	14:34:23	Completed			
/	Visualisation / Correlogram	14:32:30	Completed			
1	Visualisation / Histogram	14:32:01	Completed			
1	Visualisation / Histogram	14:31:15	Completed			
1	Visualisation / Volcano plot	14:30:48	Completed			
/	Visualisation / Chromosomal position	14:29:56	Completed			
1	Clustering / Self-organizing map (SOM)	14:09:13	Completed			

Visualizations

Clustering, Pathway analysis, Visualization

 Interpreting the results is the most complex and the most laborious part of bioinformatics and usually includes testing several tools (including online ones)

Examples of online tools useful for Pathway/Gene Ontology Analysis

- Ingenuity Pathway Analysis (IPA)
- ConsensusPathDB (CPDB)
- Enrichr
- Reactome
- PathVisio

Chipster tutorials

- http://chipster.csc.fi/
- https://www.youtube.com/channel/UCnL-Lx5gGIW01OkskZL7JEQ

Hands-on session Looking at a nano-related data set - <u>GSE42067</u>

Experimental set up

Model

Human small airway epithelial cells (SAE)

Nanomaterials

- MWCNTs (Cheaptubes)
- TiO₂ nanobelts

Doses

- 10 µg/ml
- 100 μg/ml

Time

- 1 h
- 24 h

Workflow

- Import into Chipster
- Quality control
- Normalize
- Annotate samples
- Preprocess/Filter data
- Visualize
- Identify differentially expressed genes
- Cluster and visualize
- Pathway analysis

Hands-on session conclusions

Original publication conclusions

Tilton et al, <u>Nanotoxicology</u>. 2014 Aug;8(5):533-48. doi: 10.3109/17435390.2013.803624.

- Low toxicity by MWCNTs
- High toxicity by TiO₂
- Early (1h) response common to both NP types
- Late (24 h) response NP-specific
- NP-specific responses:
 - → MWCNT uniquely up-regulated cell proliferation, anti-apoptotic and DNA repair mechanisms associated with cell survival
 - → TiO₂-NB differentially regulated inflammatory responses associated with cellular stress

Participant conclusions?